

Maximum Coverage with Fairness for Social Equity

Abolfazl Asudeh, Tanya Berger-Wolf, Bhaskar DasGupta, Anastasios Sidiropoulos

Outline

- Reminder: max cover problem
- Application Demonstration
- Problem Formulation
- Experiment results
- Solution/Analysis
- Discussions

Reminder

Reminder: Max Cover problem

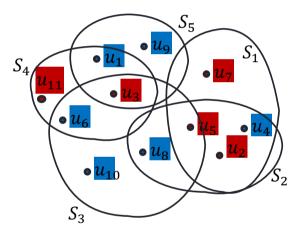
• Given:

- A universe $U = \{u_1, ..., u_n\}$ of *n* elements
- A collection of sets $S = \{S_1, ..., S_n\}$ where each set belongs to the powerset of $U: S_i \in 2^U$
- A value k
- Objective:
 - Find *k* sets that cover maximum number of elements:

 $\underset{|S'|=k}{\operatorname{argmax}} \quad \cup_{S_i \in S'} S_i$

- $U = \{u_1, \dots, u_{10}\}$ • $S = \{S_1, \dots, S_5\}$
- $S_1 = \{u_2, u_4, u_5, u_7\}$
- *k* = 3

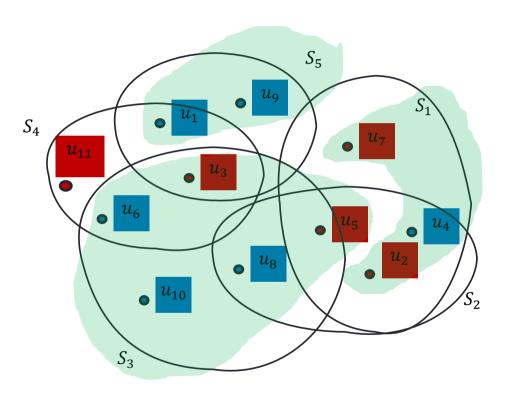
- Opt. answer:
 - $\circ \quad S_1, S_3, S_5$
 - Coverage=10



Max. cover is NP-complete

- A polynomial solution for max-cover would be a polynomial solution for <u>all</u> NP-complete problems
- The problem is (i) monotonic, (ii) submodular
 - The greedy solution achieves $\left(1-\frac{1}{e}\right)$ approximation

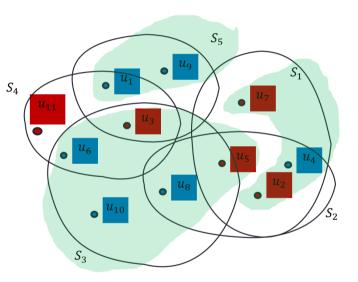
Greedy



Unfair coverage

- Coverage of blue = 6
- Coverage of red = 4

* each color shows a demographic group



(Diverse) Application Demonstration

Application1: Service/Facility Allocation

- One of the most common policy decisions made based on data is assigning services/facilities across different places.
 - Bus stops
 - School closing
 - Fire Station
 - Selecting hospitals for special treatments
- Objective: to maximize the number of people covered.
- Issue (historical biases, e.g. redlining): unfair coverage.

Service/Facility Allocation: Real examples from news

- NYC Bike sharing:
 - U: individuals
 - S: each bike station identifies a set, covering the individuals that are "close" to them
- Amazon same-day delivery:
 - $\circ \quad \text{U: individuals}$
 - S: each delivery location covers (the individuals in) a neighborhood

Application2: Data Integration

- Idea: combine multiple data sources to augment the power of any individual data source.
 - U: data points
 - S: data sources
- Objective: to collect (cover) the maximum number of data points.
- Issue: failing to include an adequate number of instances from minorities (biased datasets)

Application 3: Targeted Ad.

- Targeted advertising is popular in social media.
- Scenario:
 - A company wants to target its "potential customers"
 Needs to select a set of features (such as "single" or "college student") that specify the groups of users to be targeted.
 - U: customers
 - **S:** relevant features, each showing a group of customers, having those features
- Objective: select k features that hit max customers
- Issue: racism in the advertisement

Running Example 1: COVID-19 Testing Facilities

- Providing proper testing facilities that effectively identify infected cases is critical for minimizing the spread of the Coronavirus.
 - Limited number of testing facilities
 - Goal: maximize coverage of ppl "close" to the facilities
- Issue:
 - The coronavirus testing locations heatmap in *city of Memphis* reveal that most screening happens in predominantly white and well-off suburbs, not in black-majority, lower-income neighborhoods

Running Example 2: Targeted Job Advertisement

- Employer in Linkedin:
 - Select k keywords (resume skills) to highlight in job advertisement
 - Goal: to attract the maximum number of applicants.
- Due to the underlying biases and false stereotypes, the company may end up with, for example, sexism in the advertisement
- A major concern in employment, the company would like to attract a diverse group of applicants.

Problem formulation

Fair Max Cover (FMC) problem

- Given:
 - A universe $U = \{u_1, ..., u_n\}$ of *n* elements. Each element belongs to a demographic group, identified by its color (it can be more than 2)
 - A collection of sets $S = \{S_1, ..., S_n\}$ where each set belongs to the powerset of $U: S_i \in 2^U$
 - A value k
- Objective:
 - Find k sets that cover maximum (weighted) number of elements such that the number of elements covered from each group is equal*

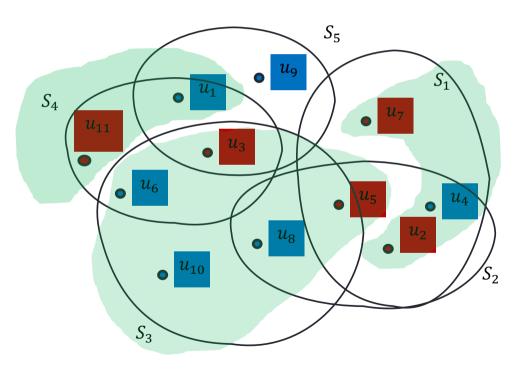
Approximation

$$\frac{1}{\epsilon} \le \frac{E[cov1]}{E[cov2]} \le \epsilon$$

• disparity: $\epsilon - 1$

FMC

- Coverage of blue = 5
- Coverage of red = 5



Experiments

Proof of Concept (Job Advertisement)

- n=1,986 individual resumes
- m=218 resume skills (keywords)
- k=5 keywords
- S: gender

• MC

Auditing, Job Scanning, Partnerships, Graphic Design, Drawing

Coverage: 1046

Disparity: 0.1

UIC Internet Index Lab

• FMC

Auditing, Coaching, Interviewing, Integrated Marketing, Organizational Development

Coverage: 1012

Disparity: 0

Proof of Concept (Covid-19 testing facilities)

- Individuals in City of Chicago $n \cong 2M$
- Each zip-code is a set, covering the ppl within 2 miles travel distance
- k=5 zip-codes
- S: race (black and white)
- MC (Greedy)
 60613, 60625, 60636, 60642, 60651
 Coverage: 790K
 Disparity: 0.78

• FMC

60613, 60620, 60636, 60642, 60651, 60653

Coverage: 817K

Disparity: 0.01

Performance Evaluation

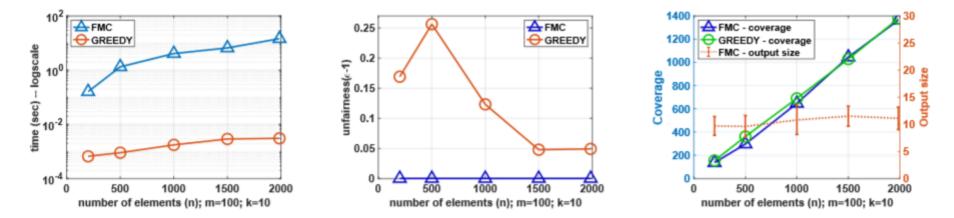


Figure 2: Varying number of items; time

Figure 3: Varying number of items; fairness

Figure 4: Varying number of items; coverage

Solution: IP formulation, Randomized Algorithm, Approximation

High-level idea (LP-relaxation)

- 1. Formulate the problem as Integer Programming (IP)
 - \circ $y_i = 1$ if set i is selected, 0 otherwise
 - $x_i = 1$ if element i is covered, 0 otherwise
- 2. Relax the integer (binary) variables to real values ([0,1])
 - $y_i \in [0,1]$ and $x_i \in [0,1]$
 - Let y_1^*, \dots, y_m^* and x_1^*, \dots, x_n^* be the output of the LP problem
- 3. $disp_{min} = \infty$
- **4.** for *n* iterations do: //do multiple roundings and choose the best
 - 1. for i=1 to m do: set $y_i^+ = 0$ with probability y_i^* (, 1 otherwise)
 - 2. for i=1 to n do: set $x_i^+ = 1$ if at least one of the sets containing is selected ($y_j^+ = 1$)
 - 3. Compute disparity for x^+ , and update $disp_{min}$ if a better solution has been discovered

LP Relaxation of IP formulation

$\sum_{i=1}^{n} w(u_i) x_i$ $x_j \leq \sum_{u_j \in \mathcal{S}_{\ell}} y_{\ell}$	for $j = 1,, n$
$\sum_{\ell=1}^{m} y_{\ell} = k$	
$\sum_{u_\ell \in C_i} x_\ell \ge k/\chi$	for $i \in \{1,, \chi\}$
$\sum_{u_\ell \in C_i} x_\ell = \sum_{u_\ell \in C_j} x_\ell$	for $i, j \in \{1,, \chi\}, i < j.^3$
$0 \le x_j \le 1$	for $j = 1,, n$
 $0 \leq y_\ell \leq 1$	for $\ell = 1, \ldots, m$

Switch to notes

Thank you, Discussions

