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Overview: Research Area

e Combination of ideas from multiple research areas
e Fairness notions in terms of causality

e Relational between conditional independence and database theory

+ +




Overview: Approach and Fairness Notion
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Overview: Main Takeaways

Need of data repair
o Discrimination due to pre-existing bias in data

New (testable) notion of fairness based on causality

o Existing associational and causal fairness notions under/over
estimate discrimination

Association of protected attribute with

admissible variables is (socially) acceptable R
o Outcome should be independent of “Inadmissible”
variables given “admissible” variables

Hobbies Qualification

Use Cl constraint for database repairing SR
Reduce to Multi-valued Dependency (MVD
’ P y( ) Source: Lecture Slides
problem

New evaluation metric for measuring

discrimination
o Ratio of Observable Discrimination (ROD)




Background: Structural Causal Model (SCM)

e Models how nature assigns values to the features of interest
o V(Endogeneous Variables): Variables of interest (for causal relationship).
o U(Exogenous Variables): Variables external to the model. Disturbances or noise.
o f(Function): The function that assign values to each variable in V.

e Avariable is defined by the function of its direct causes and unknown disturbances.

V. = £.(V©,U©)

Represented as a Causal DAG G(V,E)

A variable (V) has incoming edges from its direct causes and unknown disturbances (U).
U is not explicitly shown in G

Compact representation of joint probability distribution (like Bayesian Network)

P(V1.Va......Vs) = [ [ P(Vilpa(Vi)
=1

e (Conditional independencies by d-separation in G (from G to P)
e faithfulness: All the conditional independencies in the data are entailed by d-separation conditions
(from P to G)




Background: SCM and Causal Hierarchy ()

e Observational Question

o What if we see A? P(y|A)
e Interventional Question

o  What if we do A? P(y|do(A))

=

e Counterfactual Question P(V1.Va. .....Va) = | [P(Vilpa(Vi)
o What if we did things differently? P(y,, | A) -
P(o0, 9, h,d) = P(g)P(h|g)P(d|g, h)P(o|d, h) c

Observed outcome for cs department

P(o|D = ¢s) = X, , P(9)P(h|g)P(D = cs|g,h)P(o|D = cs,h)
Outcome when you set department to c¢s
P(oldo(D = cs)) = >, P(9)P(hlg)P(o|D = cs, h)

What would be the outcome had the applicant been a female?
P(O¢G=femaie |G = male, O = accept)




Background: Algorithmic Fairness e

Associational Fairness

Fairness Metric Description
Demographic Parity (DP) [5, 13,47] | S1.O
Conditional Statistical parity [10] SLO0JA
Equalized Odds (EO) [19, 57] SUO¥
Predictive Parity (PP)[9, 9, 19, 47] SuY|0

Causal Fairness

o Counterfactual Fairness

m Individual level fairness, hard to estimate

o Proxy Fairness

m Fails to capture some discrimination

o Path-specific Fairness

m Hard to identify path-specific effects

Example: 2.3
P(Q=1) =P(Q=0)= P(D='A") = P(D='B') = 1
e f(G,'A,Q)=G AQ,f(G, 'B,Q) = (1-G)

AQ
o Qualified male/female

op(FOXYibairness) = P(O = 1|do(G = 0))

P(O =1|do(G = 1)) = 4, P} P(DP(O = 1]g,d, G = 1)




Definition: Interventional Fairness

Definition 3.1 (K-fair). Fixa set of attributesK € V—{S, O}.
We say that an algorithm A : Dom(X) — Dom(O) is K-fair
w.r.t. a protected attribute S if, for any context K = k and
every outcome O = o, the following holds:

Pr(O = 0]do(S = 0), do(K = k)) = Pr(O = o|do(S = 1),do(K = k)) (7) Q a

An algorithm is interventionally fair if it is K-fair
for every set K.

Example fails to satisfy K-fairness when K = {D}.

Example: 2.3
P(O = 1|do(G = 1),do(D =' A')) # P(O = 1|do(G = 0),do(D =' A)) : z(é):;)g)PiQngzzQPE‘?G:AB) g)PiD(TBG)) =%
AQ

o Qualified male/female




Definition: Fairness Application and Justifiable Fairness

e Interventional Fairness fails to satisfy all cases of
individual fairness
P(o|do(G=0)) = P(o|do(G=1)) is K-fair with K={}

O

e Too restrictive
o No path from S to O as sufficient condition Q c

Definition 3.3 (Fairness application). A fairness applica-
tion over adomain Visa tuple (A, S, A, I), where A : Dom(X) — Example: 3.2

Dom(0O) is an algorithm mappying input variables X € V o P(U,=1)=P(U,=0)="%
to an outcome O € V, S € V is the protected attribute, and e O=Af(G,UO)
AUI=V-{S, 0} is a partition of the variables into admis- o f(G,0)=G

o f(G1)=1-G

sible and inadmissible.

Definition 3.4 (Justifiable fairness). A fairness application
(A, S, A, 1) is justifiability fairif it is K-fair w.r.t. all supersets
K 2 A.




Definition: Justifiable Fairness with Causal DAG

THEOREM 3.5. If all directed paths from S to O go through
an admissible attribute in A, then the algorithm is justifiably
fair. If the probability distribution is faithful to the causal DAG,
then the converse also holds.

G‘Q‘G (& @.0

a) College I b) College 1I

Question: Which one is (justifiably) fair when A = {D} ?
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Justifiable Fairness with Conditional Independence

e Avoid knowledge of causal model In terms of Outcome (O)
THEOREM 3.7. A sufficient condition for a fairness applica- 1

tion (A, S, A, 1) to be justifiably fair is MB(O) C A.

e A Markov Boundary (MB) of a variable includes its
parents, children, and spouses (other parents of
children) In terms of Labels (Y)

COROLLARY 3.8. Fix a training data D,Pr, whereY € V is
the training label, and A,1 are admissible and inadmissible
attributes. Then any reasonable classifier trained on a set of
variables X C V is justifiably fair w.r.t. a protected attribute S,
if either:

(a) Pr satisfies the CI(Y LX NI|X N A), or

(b) X 2 A and Pr satisfies the saturated CI (Y 1LI|A).
s




Building Fair Classifiers

COROLLARY 3.8. Fix a training data D, Pr, whereY € V is

Impllcatlons of Corollary 3.8 the training label, and A,1 are admissible and inadmissible

o attributes. Then any reasonable classifier trained on a set of

(a) Use only A for training variables X C V is justifiably fair w.r.t. a protected attribute S,
if either:

o Decreases utilit
/ (a) Pr satisfies the CI(YLX NI|X N A), or

(b) X 2 A and Pr satisfies the saturated CI (Y ILI|A).

(b) Repairing training data
o Use Cl condition as integrity constraint for training data D
o Minimal insertions and deletions of tuples in D to obtain D’ satisfying Cl
o Reduces to MVD problem in database theory
o Interms of causal DAG, it corresponds to modifying underlying causal model so that
there is no directed path from S->I->Y or S->Y, without the knowledge of causal model



Minimal Data Repair for MVD and (I

Given a partition, V=X U Y U Z, we say D satisfies multi-valued dependency(MVD)
Z — X if D = IIxz(D) = Izy(D)

For D, the projections are:

B [X ¥ B ms af & ¥ 2
7 X 7 Y t @ a4 & IBi X ¥ Z
th |la a c¢|3/8
to |a b c t a a c
t, la b c|2/8
c a Cc a i3 b a C ) a b C
ts | b a c|2/8
g I g b b d
t4 | b b d|1/8
d b d b Figure 5: A simple database repair: D does not satisfy the MVD
Z — X.In Dy, we inserted the tuple (b, b, c) to satisty the MVD,

and in D, we deleted the tuple (b, a, c) to satisty the MVD.



Minimal Data Repair for MVD and (I

e Given a partition, V=X UY U Z, we say D satisfies multi-valued dependency(MVD)
Z — X if D = IIxz(D) = Izy(D)
e A uniform Pr satisfies a saturated Cl (X;Y |Z) iff its support D satisfies the MVD Z — X

e Hard to have uniform Pr in training data
e Workaround: CI (KX;Y|Z) implies CI (X;Y|Z), where {K} is fresh variable not in V

D:I'X Y Z Pr ° B: [ X Y Z Dg: | K X Y Z Db: K X Y Z
a a c 1 @ @a ¢ 1 a@ a ¢

tt |a a c|3/8 a a c 2 a a c 2 a a c
th la b c|2/8 a a c 3 a a c¢ 1 a b c
a b ¢ 1 @@ &b é 2 a b ¢

t3 b a ¢ 2/8 a b ¢ 2 @ b & 1 b a c
ts4 | b b d|1/8 b a ¢ 1 b a c 1 b b ¢
b a ¢ 2 b a ¢ 1 i b «d

b b d 1 b b d ; ;

D« X Y Z | Pr

a a c | 2/7

a b ¢ | 2/7

b a ¢ | 1/7

b b ¢ | 1/7

b b d| 1/7




Reducing Minimal Repair to 3SAT

e Given a partition, V=X U Y U Z, we say D satisfies multi-valued dependency(MVD)
Z — Xif D = sz(D) > sz(D).

Then, the database D’ obtained after minimal repair is subset of p* €' M1y,(D) » zy(D)

Lineage expressions (Hard clauses): boolean conditions that doesn’t allow MVD
condition and its negation

O D, = (Xt, A Xy N=X1,)V (Xpy AXpy A=Xp)V D: X ¥ 71 Pr Di: | X Y Z
Xty A Xty A=Xp,)V Xty A Xey N=Xey) tn [a a c|3/8 ;1 Z Z E

Hence, th |la b c¢|2/8 ti i i @

-, = (=Xz, V=Xp, V X1,) A (=X, V =Xy V Xe)) A ts5 | b a ¢ |2/8 tw | b b d

(=Xt VX2, V X)) A (=X, V=Xt V Xe,) g | b B 4|8 ts |b b ¢

e Frrata: t4 should be t5 in above example.
Membership in D vs {D* - D} (Soft clauses): X ., X _, X X~ X,

(8 R AR 5



Repair via Matrix Factorization: NMF to (i

First, we review the problem of non-negative rank-one

/
matrix factorization. Given a matrix M € R™™, the prob- = i z f B i Z Z
lem of rank-one nonnegative matrix factorization (NMF) is a a c e
the minimization problem: argming g mxi yepixm [|[M = UV||, il a b c
where R stands for non-negative real numbers and ||.||r is a b ¢ a b L
the Euclidean norm of a matrix. b a ¢ g m
& B b b &
We express the connection between our repair problem b b d b b d
and the NMF problem using contingency matrices. Given _
three disjoint subsets of attributes X,Y,Z C V,let m = MBr= — 3 2 MBz=i — [O 0
|Dom(X)|, n = |[Dom(Y)|, k = |Dom(Z)| and B, = 67-4(B). XY 2 0] XY 0 1
A multiway-contingency matrix over X, Y and Z consists
of k n X m matrices M)%Y,Z = {M%le € Dom(Z)} where,
M%Y(i j) = 2teB lixy]=ij- Intuitively, M%Y(i j) represents B 2 9 B 0 0
the joint frequency of X and Y in a subset of bag with Z = z. Mo = [ 11 ] s Myy = [O 1 ]

PROPOSITION 4.2. Let B be a bag and Pr be the empirical
distribution associated to B. It holds that (X 1LY |p:Z) iff each

contingency matrix M € ME , _ is of rank-one.
S



Repair via Matrix Factorization: Algorithm

Algorithm 2: Repair using Matrix Factorization.

Input: A bag B with attributes V = XYZ a CI statment
(X1LY|Z).

Output: B” a repair of B

for z € Dom(Z) do

\‘ M)f(;', M{?’ — Factorize(M)%Y)

B’z 1 B'T (B’
MX,Y(_ _IBZIMX MY

return B’ associated with MQ:Y, 7 = {Mi@}

—

N

w

N

Setting 1 (MF): Factorize is implemented by off-the-shelf NMF algorithm

Setting 2 (Independent Coupling): Factorize is implemented by simple

factorization with marginal frequencies of Xand Y in B,
s



Generalizability and Scalability

LEMMA 5.1. If the repaired data satisfies (Y LLS, I|pr,, A) and
e Generalizability the unseen test data satisfies Prr(s,ila) = Prp (s, i|a), then the

Performance on unseen test data |unseen test data also satisfies (Y LS, Ilp:z A)

O
o Assumption: Training and test data from same distribution
o Asymptotically, Pr_(s,i|a) = Prg(s,i|a). Implies, Pr.(s,i|a) = Prg(s,i|a) should be satisfied.
o Independent Coupling (IC) approach satisfies by construction
o Other approaches only approximate the condition
e Scalability

o NP-Complete Problem

o Depends on MaxSAT solvers and MF approximators

o Can be highly parallelizable as the problem can be partitioned for domain of Z for CI
XY |2)
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Metric  Description and Definition

Ratio of Observation Discrimination:

Eva luation Metrics g:ii;i;pglwamy .........................................................................

Pr(O=1|S=1)—-Pr(0 =1|S = 0)

True Positive Rate Balance:

TPB
e < . Pr(O =1|S=1.¥=1)—=Pr(@=1|S =0, ¥ =1
Utility Metric: Accuracy s ihetded Yhal it bt | bt L I—
TNB rue Negative Rate ance:
. Pr(0=0|S5=1,Y=0-Pr(0O=0[S=0,Y=0)
. ) ' CDP Conditional Statistical Parity:
Bias Metrics: Shown in table. . BE[Pr(O=1|S=1,2-Pr(0=1|S=02)]
CTPB Conditional TPRB:
o EPr(0=1]S=1Y=12a)-Pr(0=1[S=0,Y =1,3)]
CTNB Conditional TNRB:

oo BAPHO =0|S =1, ¥ = 0,2) ~P(O=0|5=0,Y =0,3)]
Definition 6.1. Given afairness application (A, S, A, 1), let

A, = MB(O) — 1. We quantify the ratio of observational

discrimination (ROD) of ‘A against S in a context A, = a; as

. def Pr(0O=1|5=0,a;)Pr(0O=0|S=1,a;)
6(S;Olap) = Pr(0=0|5=0,a,)Pr(O=1[5=TLa)"

Intuitively, ROD calculates effect of membership in a protected group on the odds of
the positive outcome of algorithm for subjects that are similar on A_ = a,



Experiment: Setup

e ML classifiers.
o Linear Regression (LR)
o Random Forest (RF)
o Multilayer perceptron (MLP)
e Approaches of database repair
Original (No Repair)
Dropping Inadmissible
IC: Independent Coupling
MF: Matrix Factorization
MS(Hard): MaxSAT using all clauses of the lineage expression
MS(Soft): MaxSAT using a small fraction of clauses
e Datasets
o Adult, Adult-binned, COMPAS, COMPAS-binned

e Baselines

o Feldman et. al., 2015
o Calmon et. al., 2017

O O O O O O



Result: Bias vs Utility

Classifier: RF Classifier: MLP Classifier: LR
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Figure 7: Performance of CApucHIN on Adult data.

Adult Data: S=Gender, Y=Income Class, |={Marital

Status}

068 Classifier: RF Classifier: MLP Classifier: LR
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Figure 9: Performance of CapucHIN on COMPAS data.

COMPAS Data: S=Race, Y=if individual is a
recidivist, A={number of prior convictions,
severity of charge degree, age}




Result: Comparison with Baselines

Data dependent performance

Experiments on binned data to make
comparable with baselines

CAPUCINE balances bias vs utility
(generalizes to unseen test data)

Baselines were designed for DP but
work with ROD metric as well
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Figure 13: Comparison with other methods on Binned Adult data.
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Figure 14: Comparison with other methods on Binned COMPAS.




Result: Comparison with other Fairness Metrics

Adult COMPAS Binned COMPAS Binned Adult
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Figure 8: Bias reduction performance of CapucHIN for MLP classifier.



Result: Bias, Insertions/Deletions, Parallelization
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Figure 12: Speed up achieved (a) by partitioning and parallel =04
processing on 128 cores; (b) by partitioning on a single core. O
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Figure 10: Comparison of different repair methods.



Any Questions? Class Discussion

e Strengths
e Limitations

e Future Research Direction
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