Abolfazl Asudeh Fall 2020 10/08/2020

CS 594: In-process Interventions to Achieve Fairness

Ranking

Suppose you own a real estate agency with two branches in Ann Arbor and Chicago.

You want to give bonus to (1) Top-3 agents

To be fair, you want to make sure that each branch receives at least one promotion

Toy Example

Sale -- Normalized Customer Satisfaction -- Normalized

Despite the potential impact of these weights, those are **chosen in an ad-hoc manner!**

THE ORDER OF THINGS

What college rankings really tell us.

By Malcolm Gladwell

- "It is easy to see why the U.S. News rankings are so popular. A single score allows us to judge between entities"
- "Rankings depend on what weights we give to what variables"
- "This idea of using the rankings as a benchmark, college presidents setting a goal of 'We're going to rise in the U.S. News ranking' ..."

Rankings depend on what weight we give to what variables.

Designing Fair Ranking Schemes

> Abolfazl Asudeh, H. V. Jagadish, Julia Stoyanovich, and Gautam Das

SIGMOD 2019

Fairness Model:

to support human values

- Generate Fair outcomes
- Without Disparate Treatment: explicit use of sensitive attributes to make decisions
 - not allowed in many jurisdictions

High level idea

- *Offline*: Preprocess the data and generate some indices
 - OK not to be super fast
- Online: Answer user queries
 - Should be fast

2D Algorithm

Geometric interpretation

\mathcal{D}			$\int f$
id	x_1	x_2	$x_1 + x_2$
t_1	0.63	0.71	1.34
t_2	0.72	0.65	1.37
t_3	0.58	0.78	1.36
t_4	0.7	0.68	1.38
t_5	0.53	0.82	1.35
t_6	0.61	0.79	1.4

Ordering Exchange

- example
- *t*₁ < 1,2 >
- $t_2 < 2,1 >$

Ranking Regions

	<i>x</i> ₁	<i>x</i> ₂	location
t_1	3.5	1	A2
t_2	3.1	1.5	A2
t_3	2.3	1.91	С
t_4	1.8	2.3	С
t_5	0.9	3.2	A2

2D, offline:

	<i>x</i> ₁	<i>x</i> ₂	location
t_1	3.5	1	С
t_2	3.1	1.5	A2
t_3	2.3	1.91	С
t_4	1.8	2.3	A2
t_5	0.9	3.2	С

Fairness criterion: at least one from each branch

2D: Online

• Apply Binary Search! fast: $O(\log n)$

MD Algorithm

MD (more than 2 attributes)

- 2D Extension:
 - Ordering Exchanges in MD
 - Half-spaces
 - Arrangement of Hyperplanes
 - O(n^d).
 - d: number of attributes
 - Arrangement Tree
 - helps in practice
 - Still online processing is the major issue

MD – approximation

• Trade-off accuracy with efficiency:

Rather than "closest" fair function, return s/t within a constant additive approx. from the optimal "distance"

- At a high level:
 - 1. Partition the function space into equi-volume cells

The idea is to *assign a fair func. to each cell*

- 2. Limit the arrangement to each cell and *stop* when found a fair function
- 3. Assign the cells w/o a fair function to the closest discovered function

MD - Online

Simple:

- 1. Locate the cell to which the input function belong
- 2. Return the assigned function to the cell
 - fast: $O(\log N) N$ is the number of cells

Scalability, On-the-fly query processing

- Uniform Item Sampling for scalability
 - Satisfactory functions over a uniform sample are *expected* to be satisfactory
- Uniform Function Sampling for on-the-fly processing
 - Negative result: cannot guarantee the discovery of a satisfactory function with any probability p<1
 - Still is expected to find "large" (stable) satisfactory regions

On obtaining stable rankings

Abolfazl Asudeh, H. V. Jagadish, Gerome Miklau, and Julia Stoyanovich

VLDB 2019

Stability: how robust the output is

- Small changes in weights change the output?
 - Decisions based on which are questionable (not fair)
 - Not Stable

Stability: The (volume) Ratio of functions that generate an output (ranking, top-k, or partial ranking)

Region of Interest

- The range of weights that are "acceptable" to the ranking designer
 - A vector and angle distance: e.g. at least 95% cosine similarity with a ref. vector

	\mathcal{D}	f	
id	x_1	x_2	$x_1 + x_2$
t_1	0.63	0.71	1.34
t_2	0.83	0.65	1.48
t_3	0.58	0.78	1.36
t_4	0.7	0.68	1.38
t_5	0.53	0.82	1.35

High level idea

- *GetNext*: An iterative process that generate stable regions one after the other
- The user can keep enumerating stable rankings (or top-k), until he finds a satisfactory one

MD -- Threshold-based Algorithm

- Uses the arrangement tree
- In high-level:
 - Constructs the arrangement tree while only adds a postponing the process for the smaller regions

Randomized Get-Next

• A Monte-Carlo method that work based on repeated sampling and the central limit theorem

Unbiased sampling from the function space

• 1-1 mapping b/w the functions (origin-starting rays) and the points on the <u>surface</u> of origin-centered unit <u>d-sphere</u> (hypersphere in \mathbb{R}^d)

Unbiased sampling from the function space

- Sampling the weights Uniformly?
- Sampling the weights using the Normal distribution

Asudeh, Abolfazl, and H. V. Jagadish. "Responsible Scoring Mechanisms Through Function Sampling." *arXiv preprint arXiv:1911.10073* (2019).

Sampling from a region of interest

- Each Riemannian Piece is a (d-1)D Sphere (ring in 3D)
- We know how to sample from its surface!: Normal distribution
- High-level:
 - 1. Select each "ring" randomly, proportional to its area
 - 2. Select a "point" from the surface of ring (using the Normal dist.)
 - **3.** Rotate the space back

Randomized Get-Next

- **1.** Take *N* unbiased sample functions from the region of interest
- 2. While keeping a hash of outputs, "count" the number of appearance for each output
- 3. return the output that appeared the most
 - estimate its stability & compute the confidence interval

MithraRanking

(a) MithraRanking

		C_days_from_compare	s Days_b_screening_arrest	End	Juv_fel_coun	t Juv_misd_count	J
Select a Dataset		0.004638904	0.252209381	0.217537943	0	0	0
Select Dataset	Select	0.00010543	0.280761387	0.306070826	0	0	0
	(The second s	0.00010543	0.280761387	0.7748735240000001	0	0.076923077	0
Lipland Your Datapat		0.00010543	0.280761387	0.14249578400000001	0	0	0
Chose File No file chosen	[] And a second s	0.00010543	0.280761387	0.378583474	0	0	0
	Upload	0.00010543	0.280761387	0.640809444	0	0	0
		0.00010543	0.280761387	0.34148398	0	0	0
(b)		0.00010543	0.281441196	0.7748735240000001	0	0	0.1
February Criteria		0.00010543	0.280761387	0.641652614	0	0	0
Fairness Criteria		0.00010543	0.280761387	0.877740304	0	0	0
C_days_from_compas	0.21	Remove	ingestions				
Juv_other_count	0.74	Remove	39900000	Fair M	ost Stable	Fair & More stat	ble
Days_b_screening_arrest	0.68	Remove	C_days_from_compas	0.19	0.24	0.20	
Juv_fel_count	0.31	Remove	Juv_other_count	0.75	0.72	0.73	
Select Attributes	butes	c	Days_b_screening_arres	t 0.64	0.70	0.66	
Cosine Similarity	98 %		Juv_fel_count	0.30	0.28	0.33	
All weight vectors with 98% cosine similarity with t	he above weights are	equally good.	Accept?	Accept	Accept	Accept	r

(d)

Ranked Data

Rank

[*] Yifan Guan, Abolfazl Asudeh, Pranav Mayuram, H. V. Jagadish, Julia Stoyanovich, Gerome Miklau, and Gautam Das. Mithraranking: A system for responsible ranking design. SIGMOD 2019.

Ne

Juv 0 0

Nutritional Labels

Nutritional labels for interpretability

- Interpretability is an essential ingredient of successful machine-assisted decision-making.
- This motivates creating tools that show deficiencies, biases, and unfairness in score-based evaluation.
- Drawing an analogy to the food industry, where simple, standard labels convey information about the ingredients and production processes:
 - a nutritional label is a set of automatically constructed visual widgets, each conveying standardized information about "fitness for use" of data or the evaluators

[*] Julia Stoyanovich, and Bill Howe. "Nutritional Labels for Data and Models." IEEE Data Eng. Bull. 42, no. 3 (2019): 13-23.

Ranking Facts: Nutritional Labels for Rankers

Ranking Facts

← Recipe	
Attribute	Weight
PubCount	1.0
Faculty	1.0
GRE	1.0

PubCount	1.0	. (
CSRankingAllArea	0.24	Į

Importance of an attribute in a ranking is quantified by the correlation coefficient between attribute values and items scores, computed by a linear regression model. Importance is high if the absolute value of the correlation coefficient is over 0.75, medium if this value falls between 0.25 and 0.75, and low otherwise.

Тор 10:					
Attribute	Maximum	Median	Minimum		
PubCount	18.3	9.6	6.2		
CSRankingAllArea	13	6.5	1		
Faculty	122	52.5	45		

Overall:

Attribute	Maximum	Median	Minimum
PubCount	18.3	2.9	1.4
CSRankingAllArea	48	26.0	1
Faculty	122	32.0	14

Stability	

Тор-К	Stability
Top-10	Stable
Overall	Stable

	1.10	ufferts con			Lighthamsen
Fairness	0				-
DeptSizeBin	FA*IR	Pairwis	e	Proport	ion
Large	Fair	🕑 Fair	\odot	Fair	6
Small	Unfair	🗵 Unfair	8	Unfair	0

A ranking is considered unfair when the p-value of the corresponding statistical test falls below 0.05.

← Fairness

	FA*IR		Pairwise		Proportion	
DeptSizeBin	p-value	adjusted a	p-value	۵	p-value	α
Large	1.0	0.87	0.98	0.05	1.0	0.05
Small	0.0	0.71	0.0	0.05	0.0	0.05

FA*IR and difference in proportions (Proportion) are measured with respect to 26 highest-scoring items (the top-K). The top-K contains 100 items or one half of the input, whichever is smaller.

[*] Ke Yang, Julia Stoyanovich, A. Asudeh, Bill Howe, H. V. Jagadish, and G

Howe, H. V. Jagadish, and G. Miklau.

A nutritional label for rankings. In SIGMOD 2018.

MithraLabel: Flexible Data set Nutritional Labels

Upload your dataset	Choose a sample dataset
Select .csv file Upload	RecidivismData_Original.csv
Specify a task	
🔵 Classification 🔍 Ranking	g 🛑 Clustering
Selections	
Single Column Analysi	s 🗸 Multi-Column Analysis 🙎
 Pick attributes 	e all attributes ? warning
Violence_score × decile_s	core x first_name x age x
marriage_status × c_char	ge_degree x event x
Pick protected/label attrib	putes ?
race x sex x	clear all
Pick widgets yourself	?
Maximal Uncovered Pattern	s X Functional Dependencies X clear all
Slice the dataset by va	lue range ?
	clear all

Data Overview Functional Dependencies Maximal Uncovered Patterns

Data Overview (Please wait while the widgets are rendering)

Functional Dependencies

Maximal Uncovered Patterns X

Generate More Labels

[*] C. Sun, A. Asudeh, H. V. Jagadish, B. Howe, and J. Stoyanovich. MithraLabel: Flexible dataset nutritional labels for responsible data science. In CIKM 2019