Abolfazl Asudeh Fall 2020 10/06/2020

CS 594: In-process Interventions to Achieve Fairness

Classification

Reminder

• Finds the parameter θ that minimizes the loss function L(f)

$$\min_{\theta} L(f_{\theta})$$

- For efficient learning, the loss function is designed to be convex
- Optimizing the loss function, without considering demographic groups may result in "unfair" models
- Changing the problem formulation to account for fairness

 $\min_{\theta} L(f_{\theta})$
s.t.fairness

• Challenge: This is (often) not convex

Adding fairness makes the optimization non-convex

• e.g.:

 $\circ \min L(\theta)$

• s.t.
$$P(f_{\theta}(X) = 1 | S = 0) = P(f_{\theta}(X) = 1 | S = 1)$$
 Demographic Parity

 $\circ \min L(\theta)$

s.t. $P(f_{\theta}(X) \neq y | S = 0) = P(f_{\theta}(X) \neq y | S = 1)$ Misclassification Partix

Fairness constraints: Mechanisms for fair classification

> Muhammad Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P. Gummadi

Artificial Intelligence and Statistics, pp. 962-970. 2017.

- To resolve the non-convex optimization issue:
 - Proposes the (alternative) measure of "decision boundary (un)fairness" for convex margin-based classifiers such as SVM.

An alternative for disparate impact

- The difference between the strength of acceptance and rejection across different demographic groups.
- The covariance between demographic groups and their signed distance from classifier's decision boundary as the fairness measure

Decision-boundry fairness

$$cov(S, d_{\theta}(X)) = E[(S - \bar{S})d_{\theta}(X)] - E[(S - \bar{S})]E[d_{\theta}(X)]$$
$$\approx \frac{1}{n}\sum(S - \bar{S})d_{\theta}(X)$$

Considering the decision boundary at score zero: $\theta^{T}X = 0$:

$$cov(S, d_{\theta}(X)) = \frac{1}{n} \sum_{i=1}^{n} (S_i - \bar{S}) \theta^T X$$

Decision-boundry fairness:

$$\left|\frac{1}{n}\sum_{i=1}^{n}(S_{i}-\bar{S})\theta^{T}X\right| \leq \tau$$

Convex Optimization

• $\min L(\theta)$

• s.t.

$$\quad \frac{1}{n} \sum_{i=1}^{n} (S_i - \bar{S}) \theta^T X \le \tau$$

$$\quad \frac{1}{n} \sum_{i=1}^{n} (\bar{S} - S_i) \theta^T X \ge -\tau$$

Similar constraints can be applied for misclassification parity, false negative rate, and false positive rate parity

A reductions approach to fair classification

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach

ICML 2018

* This paper can handle multiple sensitive attributes and multiple fairness measure

1- How to handle different notions of fairness?

There is a cost associated with re-engineering the ML systems to satisfy fairness
→ This may be too much for many stakeholders
2- How to adopt the existing ML system?

1- multiple fairness measures

- Define generic fairness constraints
- Each fairness constrains is defined as
- $\mu_j(\theta) = E[g_j(X, S, Y, f_{\theta}(X)) | \varepsilon_j], \forall j \in \text{demographic groups}$
 - ε_i does not depend on h → does not support measures based on sufficiency
- Example:
 - **DP**
 - **EO**

1- multiple fairness measures

- Define generic fairness constraints
- Each fairness constrains is defined as
- $\mu_j(\theta) = E[g_j(X, S, Y, f_{\theta}(X)) | \varepsilon_j], \forall j \in \text{demographic groups}$
 - ε_i does not depend on h \rightarrow does not support measures based on sufficiency
- Example:
 - **DP**: $g_j(X, S, Y, f_{\theta}(X)) = f_{\theta}(x)$ and $\varepsilon_j = \{S = S_j\}$, $\varepsilon_* = true$
 - **EO**: $g_j(X, S, Y, f_\theta(X)) = f_\theta(x)$ and $\varepsilon_j = \{S = S_j, Y = y\}, \varepsilon_* = \{Y = y\}$
- Constraints:
 - $\circ \quad \mu_j(\theta) \mu_*(\theta) \le \tau$
 - $\circ \quad -\mu_j(\theta)+\mu_*(\theta)\leq \tau$

2- adopt the existing ML system

- Solution: build a wrapper around the existing learning system that ensures fairness
 - Key idea: reduce fair classification to a sequence of cost-sensitive classification problems, whose solutions yield a (randomized) classifier with the lowest (empirical) error subject to the desired constraints
 - \rightarrow The fairness component can seamlessly integrate to the system

- Find the classifier *f* that
 - 1. Minimizes the loss (classification error)
 - 2. Satisfies fairness constraints
- Iteratively call the black-box learner and apply reweighting and (possibly) relabeling the data
- It guarantees to find the most accurate fair classifier in not too many iterations (~5 in experiments)

- $\min_{\forall \theta} L(\theta)$ s.t. $M\mu(\theta) \leq \tau$
- Lagrangian dual form:

$$L(\theta,\lambda) = L(\theta) + \lambda(M\mu(\theta) - \tau)$$

Theorem: After $O(n^2 \log \# constraints)$ iterations, finds the classifier with probability $(1 - \delta)$

•
$$\min_{\forall \theta} L(\theta)$$
 s.t. $M\mu(\theta) \le \tau$

- Lagrangian dual form: $L(\theta, \lambda) = L(\theta) + \lambda(M\mu(\theta) \tau)$
- Solve for Saddle point:

$$\max_{\lambda} \min_{\theta} L(\theta, \lambda)$$
Existing ML system

Iterate while reweighting examples

Classification with fairness constraints: A meta-algorithm with provable guarantees

> Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi

FAT* 2019

- Proposes a meta-algorithm for a general class of fairness constraints with respect to multiple non-disjoint and multi-valued sensitive attributes
- Can handle non-convex linear fractional constraints, including predictive parity

Generalization of fairness functions: group performance function

- At a high-level, fairness requires equal "performance" of a classifier f for different demographic groups.
- For a classifier *f*, the group performance of group S_i is defined as

$$q_i(f) = P[\varepsilon|S_i, \varepsilon']$$

• Example:

- Accuracy rate: $\varepsilon := (f = y), \varepsilon' := \emptyset$
- False negative rate: $\varepsilon := (f = 0), \varepsilon' := (y = 1)$

The family of classifications with linear constraints

		$q_i(f)$		$Q_{ m lin}/Q_{ m linf}$
fairness metrics	statistical	f = 1	Ø	$Q_{ m lin}$
	conditional statistical	f = 1	$X \in S$	$Q_{ m lin}$
	false positive	f = 1	Y = 0	$Q_{ m lin}$
	false negative	f = 0	Y = 1	$Q_{ m lin}$
	true positive	f = 1	Y = 1	$Q_{ m lin}$
	true negative	f = 0	Y = 0	$Q_{ m lin}$
	accuracy	f = Y	Ø	$Q_{ m lin}$
	false discovery	Y = 0	f = 1	$Q_{ m linf}$
	false omission	Y = 1	f = 0	$Q_{ m linf}$
	positive predictive	Y = 1	f = 1	$Q_{ m linf}$
	negative predictive	Y = 0	f = 0	$Q_{ m linf}$

ρ -Fair formulation

• $\min_{\forall \theta} L(\theta)$

• s.t.

$$\circ \quad \rho_{q^{(i)}}(f_{\theta}) = \frac{\min q_j^{(i)}}{\max q_j^{(i)}} \ge \tau$$

Fairness Constraint

*: $q^{(1)} \dots q^{(m)}$ are the performance functions

Nonconvex

Group-fair formulation

 $\min_{\forall \theta} L(\theta)$ **s.t.**

Loss term

 $\ell_j^i \le q_j^{(i)}(f_{\theta}) \le u_j^i, \forall i \in [m], j \in [p]$ Fairness Constraint

• Fairness constraints are linear \rightarrow <u>Convex</u>

For any feasible classifier f of Group-Fair and any $i \in [m]$, f satisfies ρ -fair rule for:

$$\rho = \frac{\min \ell_j^{(i)}}{\max u_j^{(i)}}$$