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Classification



Reminder

® Finds the parameter 6 that minimizes the loss function L(f)

min L(fg)

For efficient learning, the loss function is designed to be convex
Optimizing the loss function, without considering demographic groups may
result in “unfair” models

® Changing the problem formulation to account for fairness

min  L(fg)

s.t. fairness
® Challenge: This is (often) not convex



Adding fairness makes the optimization non-convex

® ecg.
©  minL(0)
m st P(fp(X) =1|S =0) = P(fo(X) = 1|S = 1) DERENEaIREER]:
©  minL(0)

m st P(fo(X) #y|lS=0) =P(fo(X) # y|S = 1) MEeESSIileclile]aRE=IgulY




Falrness constraints:
Mechanisms for fair
classification

Muhammad Zafar, Isabel Valera, Manuel Gomez
Rogriguez, and Krishna P. Gummadi
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2017.



® To resolve the non-convex optimization issue:

o Proposes the (alternative) measure of “decision boundary (un)fairness”
for convex margin-based classifiers such as SVM.



An alternative for disparate impact

® The difference between the strength of
acceptance and rejection across
different demographic groups.

® The covariance between demographic
groups and their signed distance from
classifier’s decision boundary as the
fairness measure

Feature 2

Feature 1




Decision-boundry fairness

cov(S,dg(X)) = E[(S — )dg(X)] — E(S — ]E[dg(X)]

1 —_
~ = 3(S = §)dg (X)
Considering the decision boundary at score zero: 87X = 0:

1% _
cov(S,dg (X)) = i“t —-$eTX
i=1
Decision-boundry fairness:

<T

1% i}
_Z(S" —$oTx
n i=1




Convex Optimization

® minlL(0)
® st
1 <n 7 Similar constraints can be
o =18 —8)0'X <1 applied for misclassification

parity, false negative rate,
and false positive rate

parity

1
n




A reductions approach
to fair classification

Alekh Agarwal, Alina Beygelzimer, Miroslav
Dudik, John Langford, and Hanna Wallach
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* This paper can handle multiple sensitive attributes and multiple fairness measure

1- How to handle different notions of fairness?

There is a cost associated with re-engineering the ML systems to satisfy fairness
- This may be too much for many stakeholders

2- How to adopt the existing ML system?



1- multiple fairness measures

Define generic fairness constraints
Each fairness constrains is defined as
® 1;(0)=Elgi(X,SY,fo(X)) |1, Vj € demographic groups

o ¢ does not depend on h - does not support measures based on sufficiency

® Example:
o DP
o EO



1- multiple fairness measures

Define generic fairness constraints
Each fairness constrains is defined as
ui(0) =Elg;j(X,S,Y,fo(X)) |1, Vi € demographic groups

o ¢ does not depend on h > does not support measures based on sufficiency

Example:

o DP: gj(X,S, Y, fo(X)) = fo(x) and g ={S=S},e =true

o EO:g;(X,SY, fo(X)=fe(x)andg ={S=S;,Y =y}, e. ={¥ =y}
Constraints:

o 1(®) —p(6) <t »
o —ui(8) +m(6) S T Mu@) <t




2- adopt the existing ML system

® Solution: build a wrapper around the existing learning system that ensures
fairness

o Key idea: reduce fair classification to a sequence of cost-sensitive classification problems,
whose solutions yield a (randomized) classifier with the lowest (empirical) error subject to the
desired constraints

- The fairness component can seamlessly integrate to the system



® Find the classifier f that

1.  Minimizes the loss (classification error)

2. Satisfies fairness constraints

® lteratively call the black-box learner and apply reweighting and (possibly)
relabeling the data

® It guarantees to find the most accurate fair classifier in not too many
iterations (5 in experiments)



o rgien L(B) st. Mu(@) <t

e Lagrangian dual form:

L(O,A) =LO)+A(Mu(6) — 1)



Saddle point issue




After O(n? log #constraints) iterations, finds the

classifier with probability (1 — 6)

o n\}ign L(B) st Mu(@)<rt

e Lagrangian dual form: L(0,1) = L(8) + A(Mu(6) — 1)
e Solve for Saddle point:

max min L(O,A)

Existing ML system

Iterate while reweighting examples



Classification with fairness
constraints: A meta-algorithm
with provable guarantees

Elisa Celis, Lingxiao Huang, Vijay Keswani,
and Nisheeth K. Vishnoi

FAT* 2019



® Proposes a meta-algorithm for a general class of fairness constraints
with respect to multiple non-disjoint and multi-valued sensitive

attributes

® Can handle non-convex linear fractional constraints, including predictive

parity



Generalization of fairness functions: group performance function

® At a high-level, fairness requires equal “performance” of a classifier f for
different demographic groups.

® For a classifier f, the group performance of group S; is defined as

q:(f) = P[e|S;, €]

® Example:
o Accuracy rate: e:=(f=y),e:=0

o False negative rate: e=(f=0),e=>=1)



The family of classifications with linear constraints

= 4itf) =7 Qin/Qiint
statistical f=1 0 Qlin
conditional statistical | f=1 | X €S Qiin
false positive f=1]Y=0 Qlin
. false negative f=0|Y=1 Qlin
¥ true positive f=1]Yy=1 Qlin
g true negative f=0]Y=0 Qlin
2 accuracy f=Y 0 Qlin
g false discovery Y=0| f=1 Qlint
= false omission Y=1] f=0 Qlint
positive predictive Y=1| f=1 Qlint
negative predictive | Y =0 | f =0 Qlint




p-Fair formulation Nonconvex

e min L(60) Loss term
\Z)

e S.t.

min q? . .
o pa(fo) = maxg® > T Fairness Constraint
j

*: q(l) q(m) are the performance functions



Group-fair formulation

o Lo
s.t.
{?} < q](-i)(fg) < u},‘v’i €[ml,j€p] [ElRAEEESRSIE

® Fairness constraints are linear 2> Convex

For any feasible classifier f of Group-Fair and any i € [m], f satisfies p-fair rule for:

min {’@
_ )
p= 0)
max u,




