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Classification



Reminder

● Finds the parameter 𝜃 that minimizes the loss function 𝐿 𝑓

min
𝜃

𝐿(𝑓𝜃)

● For efficient learning, the loss function is designed to be convex

● Optimizing the loss function, without considering demographic groups may 

result in “unfair” models

● Changing the problem formulation to account for fairness

min
𝜃

𝐿(𝑓𝜃)

𝑠. 𝑡. 𝑓𝑎𝑖𝑟𝑛𝑒𝑠𝑠

● Challenge: This is (often) not convex



Adding fairness makes the optimization non-convex

● e.g.:

○ min 𝐿(𝜃)

■ s.t. 𝑃 𝑓𝜃 𝑋 = 1 𝑆 = 0 = 𝑃 𝑓𝜃 𝑋 = 1 𝑆 = 1 Demographic Parity

○ min 𝐿(𝜃)

■ s.t. 𝑃 𝑓𝜃 𝑋 ≠ 𝑦 𝑆 = 0 = 𝑃 𝑓𝜃 𝑋 ≠ 𝑦 𝑆 = 1 Misclassification Partiy



Fairness constraints: 
Mechanisms for fair 
classification

Muhammad Zafar, Isabel Valera, Manuel Gomez 
Rogriguez, and Krishna P. Gummadi

Artificial Intelligence and Statistics, pp. 962-970. 
2017.
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● To resolve the non-convex optimization issue:

○ Proposes the (alternative) measure of “decision boundary (un)fairness” 

for convex margin-based classifiers such as SVM.



An alternative for disparate impact 

● The difference between the strength of 

acceptance and rejection across 

different demographic groups.

● The covariance between demographic 

groups and their signed distance from 

classifier’s decision boundary as the 

fairness measure



Decision-boundry fairness

𝑐𝑜𝑣 𝑆, 𝑑𝜃 𝑋 = 𝐸 𝑆 − ҧ𝑆 𝑑𝜃 𝑋 − 𝐸 𝑆 − ҧ𝑆 𝐸[𝑑𝜃 𝑋 ]

≈
1

𝑛
∑ 𝑆 − ҧ𝑆 𝑑𝜃 𝑋

Considering the decision boundary at score zero: 𝜃⊤𝑋 = 0:

𝑐𝑜𝑣 𝑆, 𝑑𝜃 𝑋 =
1

𝑛
෍

𝑖=1

𝑛

𝑆𝑖 − ҧ𝑆 𝜃𝑇𝑋

Decision-boundry fairness:

1

𝑛
෍

𝑖=1

𝑛

𝑆𝑖 − ҧ𝑆 𝜃𝑇𝑋 ≤ 𝜏



Convex Optimization

● min𝐿(𝜃)

● s.t.

○
1

𝑛
∑𝑖=1
𝑛 𝑆𝑖 − ҧ𝑆 𝜃𝑇𝑋 ≤ 𝜏

○
1

𝑛
∑𝑖=1
𝑛 ҧ𝑆 −𝑆𝑖 𝜃

𝑇𝑋 ≥ −𝜏

Similar constraints can be 
applied for misclassification 
parity, false negative rate, 
and false positive rate 
parity



A reductions approach 
to fair classification

Alekh Agarwal, Alina Beygelzimer, Miroslav 

Dudík, John Langford, and Hanna Wallach

ICML 2018
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* This paper can handle multiple sensitive attributes and multiple fairness measure

1- How to handle different notions of fairness?

There is a cost associated with re-engineering the ML systems to satisfy fairness
→ This may be too much for many stakeholders

2- How to adopt the existing ML system?



1- multiple fairness measures

● Define generic fairness constraints

● Each fairness constrains is defined as

● 𝜇𝑗 𝜃 = 𝐸 𝑔𝑗 𝑋, 𝑆, 𝑌, 𝑓𝜃 𝑋 𝜀𝑗], ∀𝑗 ∈ demographic groups

○ 𝜀𝑗 does not depend on h → does not support measures based on sufficiency

● Example:
○ DP

○ EO



1- multiple fairness measures

● Define generic fairness constraints

● Each fairness constrains is defined as

● 𝜇𝑗 𝜃 = 𝐸 𝑔𝑗 𝑋, 𝑆, 𝑌, 𝑓𝜃 𝑋 𝜀𝑗], ∀𝑗 ∈ demographic groups
○ 𝜀𝑗 does not depend on h → does not support measures based on sufficiency

● Example:
○ DP: 𝑔𝑗 𝑋, 𝑆, 𝑌, 𝑓𝜃 𝑋 = 𝑓𝜃 𝑥 and 𝜀𝑗 = {𝑆 = 𝑆𝑗} , 𝜀∗ = 𝑡𝑟𝑢𝑒

○ EO: 𝑔𝑗 𝑋, 𝑆, 𝑌, 𝑓𝜃 𝑋 = 𝑓𝜃 𝑥 and 𝜀𝑗 = 𝑆 = 𝑆𝑗, 𝑌 = 𝑦 , 𝜀∗ = 𝑌 = 𝑦

● Constraints:
○ 𝜇𝑗 𝜃 − 𝜇∗ 𝜃 ≤ 𝜏

○ −𝜇𝑗 𝜃 + 𝜇∗ 𝜃 ≤ 𝜏 𝑀𝜇 𝜃 ≤ 𝜏



2- adopt the existing ML system

● Solution: build a wrapper around the existing learning system that ensures 

fairness

○ Key idea: reduce fair classification to a sequence of cost-sensitive classification problems, 

whose solutions yield a (randomized) classifier with the lowest (empirical) error subject to the 

desired constraints

→ The fairness component can seamlessly integrate to the system



● Find the classifier f that 

1. Minimizes the loss (classification error)

2. Satisfies fairness constraints

● Iteratively call the black-box learner and apply reweighting and (possibly) 

relabeling the data

● It guarantees to find the most accurate fair classifier in not too many 

iterations (~5 in experiments)



● min
∀𝜃

𝐿(𝜃) s.t. 𝑀𝜇 𝜃 ≤ 𝜏

● Lagrangian dual form: 

𝐿 𝜃, 𝜆 = 𝐿 𝜃 + 𝜆(𝑀𝜇 𝜃 − 𝜏)



Saddle point issue



Iterate while reweighting examples 

Existing ML system

● min
∀𝜃

𝐿(𝜃) s.t. 𝑀𝜇 𝜃 ≤ 𝜏

● Lagrangian dual form: 𝐿 𝜃, 𝜆 = 𝐿 𝜃 + 𝜆(𝑀𝜇 𝜃 − 𝜏)

● Solve for Saddle point: 

max
𝜆

min
𝜃

𝐿 𝜃, 𝜆

Theorem: After 𝑂(𝑛2 log #𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) iterations, finds the 
classifier with probability (1 − 𝛿)



Classification with fairness 
constraints: A meta-algorithm 
with provable guarantees

Elisa Celis, Lingxiao Huang, Vijay Keswani, 

and Nisheeth K. Vishnoi

FAT* 2019
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● Proposes a meta-algorithm for a general class of fairness constraints 

with respect to multiple non-disjoint and multi-valued sensitive 

attributes

● Can handle non-convex linear fractional constraints, including predictive 

parity



Generalization of fairness functions: group performance function

● At a high-level, fairness requires equal “performance” of a classifier f for 

different demographic groups. 

● For a classifier f, the group performance of group 𝑆𝑖 is defined as

𝑞𝑖 𝑓 = 𝑃[𝜀|𝑆𝑖 , 𝜀′]
● Example: 

○ Accuracy rate:                    𝜀 ∶= 𝑓 = 𝑦 , 𝜀′: = ∅

○ False negative rate:           𝜀 ∶= 𝑓 = 0 , 𝜀′ ≔ (𝑦 = 1)



The family of classifications with linear constraints



𝜌-Fair formulation

● min
∀𝜃

𝐿(𝜃) Loss term

● s.t.

○ 𝜌𝑞 𝑖 𝑓𝜃 =
min 𝑞𝑗

𝑖

max 𝑞𝑗
𝑖 ≥ 𝜏 Fairness Constraint

*: 𝑞 1 … 𝑞 𝑚 are the performance functions

Nonconvex



Group-fair formulation

min
∀𝜃

𝐿(𝜃) Loss term

s.t.

ℓ𝑗
𝑖 ≤ 𝑞𝑗

𝑖 𝑓𝜃 ≤ 𝑢𝑗
𝑖 , ∀ 𝑖 ∈ 𝑚 , 𝑗 ∈ [𝑝] Fairness Constraint

● Fairness constraints are linear → Convex

For any feasible classifier f of Group-Fair and any 𝑖 ∈ 𝑚 , f satisfies 𝜌-fair rule for:

𝜌 =
min ℓ𝑗

𝑖

max 𝑢𝑗
𝑖


