Abolfazl Asudeh Fall 2020 9/29/2020

CS 594: Preprocess Interventions to Achieve Fairness

Interventions to achieve responsible scoring

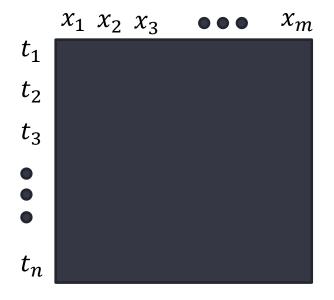
- Pre-process Techniques
- In-process Techniques (Scoring Algorithm Modification)
- Post-process techniques

[*] S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E. P. Hamilton, and D. Roth. A comparative study of fairness-enhancing interventions in machine learning. In FAT*, 2019.

Pre-processing and Data Investigation

Reminder: Bias in rows v.s. columns

- Bias in rows: Not enough representative tuples from minority (sub)groups
- Bias in columns: Features are biased (correlated) with sensitive attributes



Prelim. thoughts?

Data preprocessing techniques for classification without discrimination

Faisal Kamiran and Toon Calders

Knowledge and Information Systems 33.1 (2012): 1-33

• Preprocessing techniques for discrimination-free evaluation

- 1. Suppression of Sensitive Attribute
- 2. Massaging the dataset
- 3. Reweighting
- 4. Resampling
- Binary target variable, one binary sensitive attribute

Suppression of Sensitive Attribute

• To remove the attributes that highly correlate with the sensitive attribute.

Massaging the dataset

- Change the label of some tuples in the training data, in order to minimize the discrimination.
- Considers a subset of data from the minority group as promotion candidates:
 - Change the labels of promotion candidates from to +
- a subset of data from the majority group as demotion candidates:
 - Change the labels of demotion candidate from + to –
- Which labels to select?
 - Learn a classifier; rank the tuples based on their probability of having positive labels
 - Select the top-k of minority (for promotion) and the bottom-k of majority (for demotion)

Notes

Reweighting

- Instead of changing the labels, each tuple in the training data is assigned with a weight
- This works for all the methods for which tuple weights can be used as frequency counts
- 1. For each of the group-value combinations, it computes the probability if independence would hold.
- 2. The weight of a group is ratio b/w its probability under independence and it actual probability in the dataset

Reweighting, Example

Compute the weight for (female,+)

Sex	Ethnicity	Highest degree	Job type	Class
М	Native	H. school	Board	+
M	Native	Univ.	Board	+
M	Native	H. school	Board	+
M	Non-nat.	H. school	Healthcare	+
M	Non-nat.	Univ.	Healthcare	$\sim - 1$
F	Non-nat.	Univ.	Education	-
F	Native	H. school	Education	—
F	Native	None	Healthcare	+
F	Non-nat.	Univ.	Education	_
F	Native	H. school	Board	+

Reweighting, Example

$$P_{exp}(sex = f \land X(class) = +) = .5 \times .6 = .3$$

From the dataset:

$$P(sex = f \land X(class) = +) = .2$$

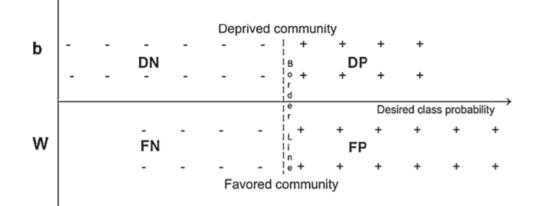
$$\rightarrow W(x) = \frac{0.3}{0.2} = 1.5$$

Sex	Ethnicity	Highest degree	Job type	Class
М	Native	H. school	Board	+
M	Native	Univ.	Board	+
M	Native	H. school	Board	+
M	Non-nat.	H. school	Healthcare	+
M	Non-nat.	Univ.	Healthcare	-
F	Non-nat.	Univ.	Education	-
F	Native	H. school	Education	-
F	Native	None	Healthcare	+
F	Non-nat.	Univ.	Education	_
F	Native	H. school	Board	+

Resampling

- Calculate the sample size for each of the group-value combination.
 - e.g.: {male reject, male accept, female reject, female accept}

Sample size	DP	DN	FP	FN
Actual	8	12	12	8
Expected	10	10	10	10

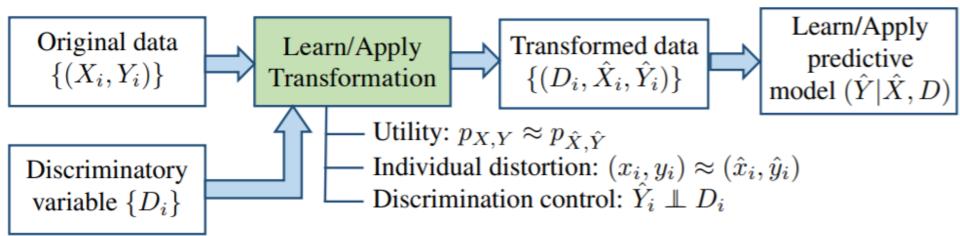


Optimized pre-processing for discrimination prevention

> Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R. Varshney

Advances in Neural Information Processing Systems. 2017.

- A probabilistic formulation of data pre-processing to reduce discrimination
- Convex optimization to learn a data transformation that:
 - 1. Control discrimination
 - 2. Limit the distortion in individual data samples
 - 3. Preserve utility



Certifying and removing disparate impact

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian

KDD 2015

- The goal is to certify and remove disparate impact by modifying each attribute such that:
 - predictability of sensitive attribute using the input data is impossible (minimized)
 - 2. predictability of class label is preserved

Disparate Impact

- Consider an attribute *X*, a single binary sensitive attribute *S*, and a binary classifier *f*
- *f* has disparate impact of *t*, if:

$$\frac{P(f(X) = 1 | S = 0)}{P(f(X) = 1 | S = 1)} \le t$$

 That is, the probability that a member of a protected class being classified as 1 (accept) is at most *t* times (e.g. t=80% -- the 80% rule) less than a member of unprotected class.

Certifying disparate impact

- The main idea is that a classifier f(X) does not have disparate impact, if the sensitive attribute S is not predictable by X.
- → We can check the data without knowing the label attribute or the even the algorithm

Certifying Disparate Impact

• Balanced Error Rate (BER): consider a classifier $g: X \rightarrow S$

$$BER(g(X),S) = \frac{P(g(X) = 0|S = 1) + P(g(X) = 1|S = 0)}{2}$$

• ϵ -Predictability: The data is ϵ -predictable if there exists $g: X \to S$ such that $BER(g(X), S) \le \epsilon$

Theorem: If a dataset *D* admits a classifier *f* with disparate impact of 0.8, then *D* is $(0.5 - \frac{B}{8})$ -predictable, where B = P(F(X) = 1|S = 0)

$$BER(f(X),S) = \frac{P(f(X) = 0|S = 1) + P(f(X) = 1|S = 0)}{2}$$
$$= \frac{1 - P(f(X) = 1|S = 1) + B}{2}$$

$$\leq \frac{1 - P(f(X) = 1 | S = 0) / 0.8 + B}{2}$$
$$= \frac{1 - B / 0.8 + B}{2} = \frac{1}{2} - \frac{B}{8}$$

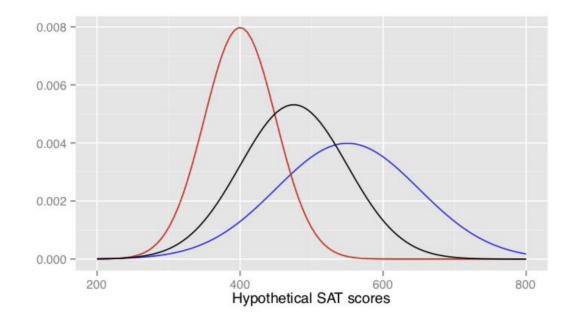
Removing Disparate Impact

- It is easy to remove the data disparate-impact free: Just set all values of X'=0
- This, however, removes the power of data to predict class labels
- We want to transform X to X' such that prediction power of data is preserved:
 - we want to transform X in a way that the rankings within demographic groups is preserved (but not necessarily across groups).

Removing Disparate Impact

- Let p_x^s be the percentage of tuples at group S = s with value at most X = x
- for each tuple (x_i, s_i) :
 - Calculate $p_{x_i}^{s_i}$
 - Find x_i^{-1} such that $p_{x_i^{-1}}^{(1-S_i)} = p_{x_i}^{S_i}$
 - **Repair** $\overline{x_i}$ as median (x_i, x_i^{-1})

Removing Disparate Impact



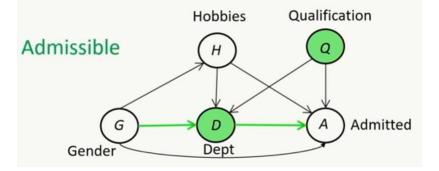
Interventional Fairness: Causal Database Repair for Algorithmic Fairness

Babak Salimi, Luke Rodriguez, Bill Howe, Dan Suciu

SIGMOD 2019

- Repair the pre-existing human bias before using the data for learning
- Proposes the causal notion of fairness and reduces the problem to dataset repair

- User specify admissible variables K, only allow causal influence through K
- Admissible variables are socially not discriminative



 An application is fair if the protected attribute does not affect the outcome for any possible configuration of admissible variables

• Given admissible variables, derive a set of conditional independence constraints that imply interventional fairness.

- Model as a database repair problem
- Classifiers trained on repaired data:
 - Provably fair by interventional fairness
 - Empirically fair by other metrics

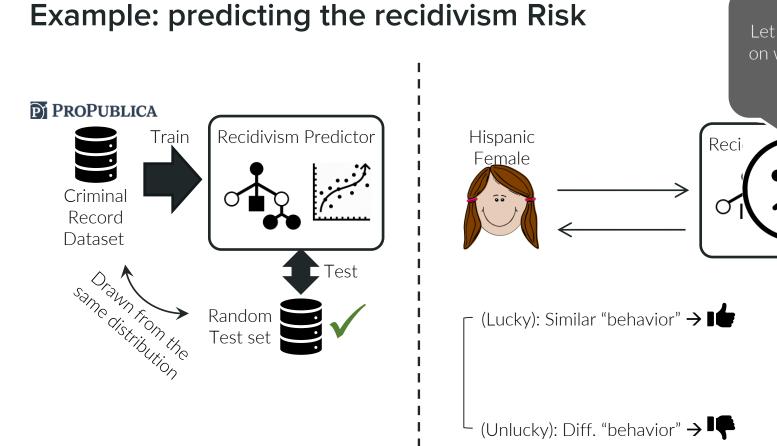
Assessing and Remedying Coverage for a Given Dataset

A. Asudeh, Z. Jin, H. V. Jagadish

ICDE 2019

Coverage

• To make sure the dataset has "enough" representatives from the minority subgroups



34

Let me guess based on what I have seen ("generalize"<u>)</u>

("generalize")

- Identifying lack of coverage:
 - Challenge: Combinatorial attributes space \rightarrow #P-hard problem
 - Transform the problem to a DAG traversal; practically efficient algorithms
- Coverage Enhancement:
 - What are the min. records to collect, in order to remove lack of coverage
 - A set cover instance with exponential size input

MithraCoverage

[*] Z Jin, M Xu, C Sun, A Asudeh, and H. V. Jagadish. MithraCoverage: A System for Investigating Population Bias for Intersectional Fairness. In SIGMOD 2020.

