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Group Fairness



Fairness in (binary) classification

One very simple set up is to assume a classification task with a known correct 

answer, at least after the fact.  Every classification algorithm is likely to have some 

error.

So, we define a matrix as in this figure:

An ideal classifier has only TP and FP.

But a real classifier has non-zero FN and TN

TP                    FP

FN                  TN



From Whose Perspective?

● Decision Maker

● Defendant



Decision maker: 

Of those labeled positive, how many are truly positive

Positive Predictive Value: TP/(TP+FP)

TP                    FP

FN                  TN



Decision maker: 

Of those labeled positive, how many are truly positive

Positive Predictive Value: TP/(TP+FP)

PP1 = PP2

TP                    FP

FN                  TN

TP                    FP

FN                  TN

g1

g2



Defendant: 

What is the likelyhood for each demographic group to 

be labeled as positive

Demographic Parity: (TP+FP) / (FP+FN+TP+TN)

DP1 = DP2

TP                    FP

FN                  TN

TP                    FP

FN                  TN

g1

g2



Decision maker: 

How likely is an individual to be mistakenly labeled 

positive.

Of those that are truly negative, how many are labeled 

positive

False Positive Rate: FP/(FP+TN)

FP1 = FP2

Similarly:

False negative rate, True positive rate, True Negative rate

TP                    FP

FN                  TN

TP                    FP

FN                  TN

g1

g2



Decision maker: 

How frequently does the system produce the wrong label 

Error Rate: (FP+FN)/(FP+FN+TP+TN)

ER1 = ER2

How frequently does the system produce the correct label 

Accuracy: (TP+TN)/(FP+FN+TP+TN)

AR1 = AR2

TP                    FP

FN                  TN

TP                    FP

FN                  TN

g1

g2



21 definitions of fairness  (Narayanan)

For every protected group, compute metric of choice, and compare against the 

same metric for the population as a whole (Or another subgroup).

How many can you count?

We will later discuss:

Not all definitions can be satisfied simultaneously, in general. 

Even 3 can be impossible (Chouldechova, and several follow on papers).



Group Fairness categories

Group 
Fairness

Independence Separation Sufficiency Causation



Independence

● A model satisfies independence if 𝑓𝜃 𝑋 ⊥ 𝑆. That is, the outcome of the 

model is independent from the sensitive attribute(s)

● In a binary classification setting: P 𝑓𝜃 𝑋 = 1|𝑆 = 𝑎 = P 𝑓𝜃 𝑋 = 1|𝑆 = 𝑏

● Fairness notions such as demographic parity or statistical parity follow the 

independence model

● (TP+FP) / (FP+FN+TP+TN)
TP                    FP

FN                  TN



Separation

● 𝑓𝜃 satisfies separation, if its outcome is independent from the sensitive 

attribute(s) conditional on the target variable: 𝑓𝜃 𝑋 ⊥ 𝑆 | 𝑌

● Here we are looking at the columns of our matrix

● E.g.: Equalized Odds, False Positive Rate, …

TP                    FP

FN                  TN



Equalized Odds

Both True Positive Rate and False Positive Rate should be equal for protected 

subgroup and others. 

● for all demographic groups a, b the two constraints

P 𝑓𝜃 𝑋 = 1|𝑌 = 1, 𝑆 = 𝑎 = P 𝑓𝜃 𝑋 = 1|𝑌 = 1, 𝑆 = 𝑏

P 𝑓𝜃 𝑋 = 1|𝑌 = 0, 𝑆 = 𝑎 = P 𝑓𝜃 𝑋 = 1|𝑌 = 0, 𝑆 = 𝑏



Sufficiency

● 𝑓𝜃 satisfies sufficiency, under the same model outcomes, sensitive 

attribute(s) and the true outcome are independent: 𝑌 ⊥ 𝑆 | 𝑓𝜃 𝑋 .

● Here we are looking at the rows of our matrix

● E.g.: Predictive Parity.

TP                    FP

FN                  TN



Predictive Parity

● Equal positive predictive value for all demographic groups a, b

P 𝑌 = 1|𝑓𝜃 𝑋 = 1, 𝑆 = 𝑎 = P 𝑌 = 1|𝑓𝜃 𝑋 = 1, 𝑆 = 𝑏

● Equal negative predictive value for all demographic groups a, b

P 𝑌 = 0|𝑓𝜃 𝑋 = 0, 𝑆 = 𝑎 = P 𝑌 = 0|𝑓𝜃 𝑋 = 0, 𝑆 = 𝑏

Other possibilities

P 𝑌 = 1|𝑓𝜃 𝑋 = 0, 𝑆 = 𝑎 = P 𝑌 = 1|𝑓𝜃 𝑋 = 0, 𝑆 = 𝑏

P 𝑌 = 0|𝑓𝜃 𝑋 = 1, 𝑆 = 𝑎 = P 𝑌 = 0|𝑓𝜃 𝑋 = 1, 𝑆 = 𝑏



Causality

If A affects B, which in turn affects C.

Then transitively, A affects C.  However, A and C are independent given the value 

of B. 

For example, race can affect socioeconomic status, which in turn can affect 

whether one is hired.  If there is no other way that race affects hiring, then we can 

get hiring separated from race  given socioeconomic status.



How to bound disparities?

● Equal can never mean exactly equal in practice. A threshold is used to 

declare unfairness.  Usually set at 80%.

● Disparity on Difference

𝐹1 − 𝐹2 ≤ 𝜏

● Disparity on Ratio

1

1 + 𝜏
≤
𝐹1
𝐹2

≤ (1 + 𝜏)

𝐶1
𝐶
−
𝐶2
𝐶

≤ 𝜏


