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Fairness

Fairness is an important requirement for any automated decision system 

[popularly referred to as “AI system”, whether or not this actually uses AI 

techniques]..

Our focus in this lecture is score-based ranking and classificaiton.  



What is Fairness

We have already seen it is hard to define!

From whos prespective? 

How about a simple resolution?: Do not even record the sensitive attributes 

(senstive attributes are not part of the observation)



Example 1: Demographic Disparity



Example 2: Misclassification Disparity



A simple resolution?

How about a simple resolution?: Do not even record the sensitive attributes 

(senstive attributes are not part of the observation)

● No, it doesn’t work:

○ Different Deomgraphic groups may follow different distributions

○ Due to biases in data (we will discuss it later), the observations may be biased (e.g. correlated 

with sensitive attributes)



Simple Resolution 2

● How about building separate models for different groups?

● No!

1. We usually have few samples from minority groups → less accurate models for minorities

2. Observations across groups may help building more effective models

■ Not using all available training data → less (overall) performance

3. How about subgroups

4. How about individual fairness 

5. Disparate Treatment



Disparate Treatment

Historically, and in law, we find two common “definitions” of fairness: Disparate 

Treatment and Disparate Outcome.

Individuals should not be treated differently on account of a sensitive attribute.

Do not explicitly use demographic information in decision making (as an 

observation):

○ E.g.: do not have different rubrics for males and females in grading

○ (still when designing the rubric you can be careful to implicitly take care of disparities)



Disparate Outcome

No disparate outcome is a group measure, and requires that the aggregate over 

the group of all individuals with a particular value of the sensitive attribute, the 

outcomes be similar.  

○ E.g.: fraction of women selected for a job corresponds to fraction of women who applied (or to 

fraction of women in the population).



At a high level Fairness 
Categories

Individual Fairness Subgroup Fairness Group Fairness


