

We are woking for a dataset they I has enough Samples from all groups. Z Corr (X, y) is Maximized 3 Corr (X, S) is Minimized

Balanced Error have (BER): for any predictor
$$g(.)$$
 that
Predicts the (Binny) Sansitive attribute S,
BER($g(X)$) = $\frac{P(B=1|S=0) + P(B=0|S=1)}{2}$
-S is E-predictable by X, if $\exists g: X \rightarrow 10, 13$
where $BER(g) \leq E$
-Theorem, for any target value t for disparate impact,
there exists a value E, such that if S is not
E-predicatable by X, any classifier trained on X
Satisfies the disparate impact requirement
Fronf sketch:
 $BER(g) = \frac{P(g=1|S=0) + P(g=0|S=1)}{2}$
disparate impact requirement:
 $\frac{P(g=1|S=0) + (1-P(g=1|S=1))}{2}$
disparate impact requirement:
 $\frac{P(g=1|S=0) + (1-P(g=1|S=1)) \leq \frac{P(g=1|S=0)}{2}$
 $= \frac{P(g=1|S=0) + (1-P(g=1|S=1)) \leq \frac{P(g=1|S=0)}{2}$
 $= \frac{P(g=1|S=0) + (1-P(g=1|S=0)) \leq \frac{P(g=1|S=0)}{2}$