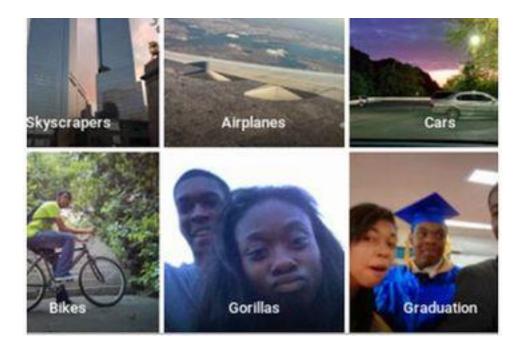
Fairness-Aware Range Queries for Selecting Unbiased Data

<u>Suraj Shetiya</u>, Ian Swift, Abolfazl Asudeh, Gautam Das ICDE 2022

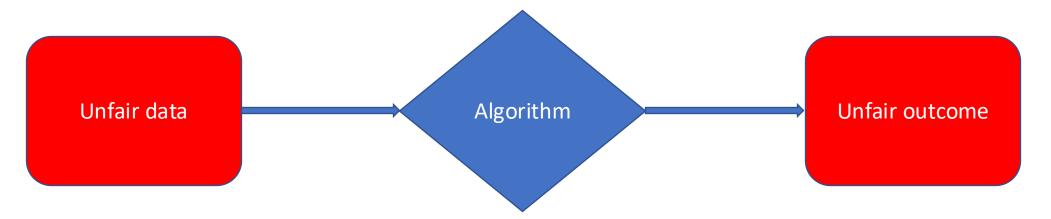

Contents

- Consuming biased data and their consequences
- Fairness-Aware Range Queries
- Algorithms for 1D and general dimensions
- Experimental results

Biased data impact

 Google's search tags black people as gorilla*

Too few images of black people in training set



* https://www.wsj.com/articles/BL-DGB-42522

Unfair outcome

 Unfair data leads to unfair outcomes often with grave consequences to the stake holders

An algorithm is only as good as the data it works with

Different fairness criteria

- C_r , C_b Number of reds and blues in given range-query
- $n_{\rm r}$, $\ n_{\rm b}$ Number of reds and blues in given universe
- Ideal distribution of people would have $\frac{C_r}{n_r} = \frac{C_b}{n_b}$
- Our model based on demographic parity

$$|W_rC_r - W_bC_b| \leq \varepsilon$$

Similarity measure

 Given two range queries, similarity between queries is defined by Jaccard similarity on the objects/tuples that belong to the two queries

$$SIM(Q_1, Q_2) = \frac{out(D, Q_1) \cap out(D, Q_2)}{out(D, Q_1) \cup out(D, Q_2)}$$

Declarative Fairness-Aware Range Queries

• Find most similar range query to given range query, such that output range query is fair.

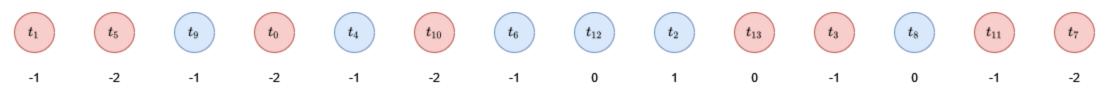
```
SELECT ... FROM DATABASE
WHERE
RANGE-PREDICATES
SUBJECT TO
|W_r C_r - W_b C_b| \le eps and SIM >= tau
```

Unweighted single predicate range query

- Adding or removing an item from a single predicate range query changes the disparity of the range by 1
- Simple observation: The most similar fair range must have a disparity of δ exactly
- One can thus explore only those ranges which have a disparity of δ. As the left/right end point of the range can move, the sum of the disparity covered by the left and right should add up to δ.

Data Structures – Single Predicate

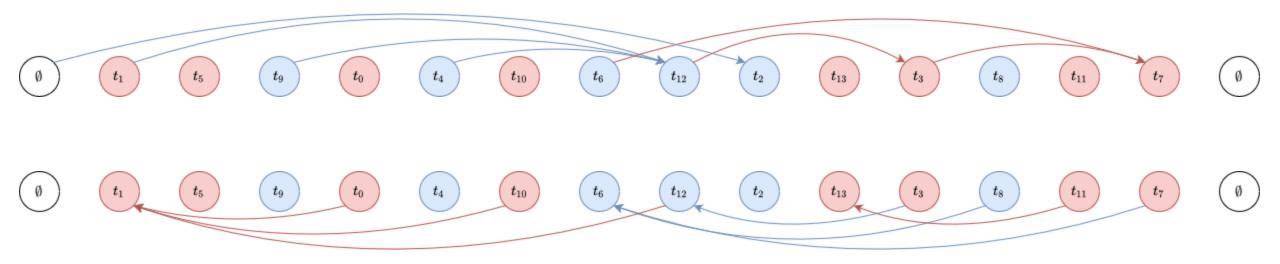
- Cumulative Sum Helps search the disparity of any given range in log(n) time.
- To enable exploring the ranges which have δ disparity, we maintain a data structure which can help us move the end points efficiently.
- Jump Pointer is a data structure that points to the next location in the dataset which has one additional blue (red resp).


Jump Pointers - Preprocessing

- Create a cumulative sum at each location
- Construct jump pointers using the cumulative sums
- Takes a total O(n log(n)) time

ID	A0	A1
tO	3.1	1.5
t1	0.7	2.3
t2	8	0.65
t3	10.9	1.5
t4	4.4	8.7
t5	1.2	4.1
t6	6.2	6.3
t7	13	5.4
t8	11.3	2.6
t9	2.3	8.4
t10	5.6	4.7
t11	12.7	2.8
t12	7	0.3
t13	9.1	9.4

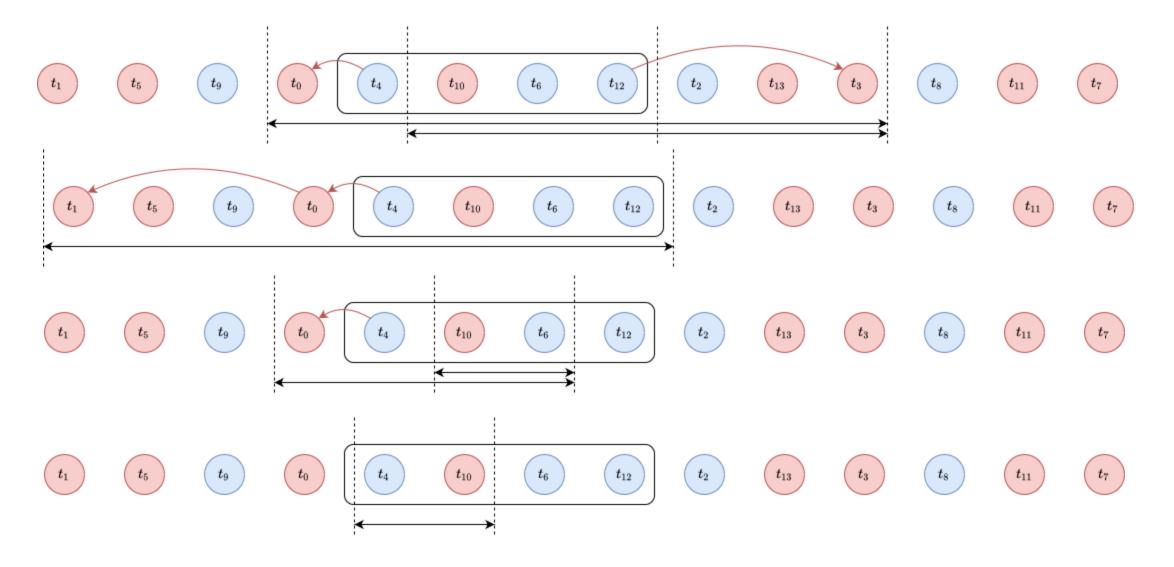
Cumulative sum


- Sort the elements by the attribute A_0
- Start from left most location with 0 , blue counts as +1 and red as -1

 When a single predicate query is provided, the end points can be searched in

Jump Pointers

• Cumulative sum is processed to obtain blue and red jump pointers


• Jump pointers take a total of O(n log(n)) time to compute

Fair range query example

- Various combinations include expanding/shrinking from left or right
- For the sample range [4.4, 7], expanding 2 to the right to find a range with 0 disparity

$$t_1$$
 t_5 t_9 t_0 t_1 t_1 t_2 t_1 t_3 t_8 t_1 t_7

Fair query – Other windows

Fair range query Complexity

- Preprocessing O(n log(n))
- Query processing time O(log(n) + disparity)

Weighted fair range query

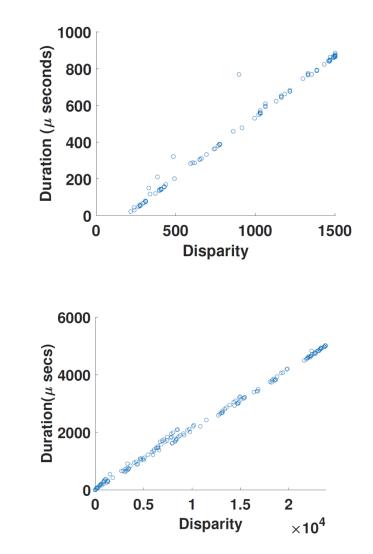
- Jump pointers extended to weighted case
- Next pointer points to the location which has a greater/smaller cumulative sum to point to the next blue/red location
- Instead of exact disparity of δ , we check for locations along the pointers which have a disparity less than δ
- Complexity of preprocessing and query processing remain same as unweighted case

Multi predicate range query

- Jump Pointers don't extend to multi-predicate case
- Neighboring range: Two ranges are called neighboring ranges, if the tuples contained by the two ranges differ by one
- Our Approach: Use a Local Search algorithm near the input range to find the closest fair range

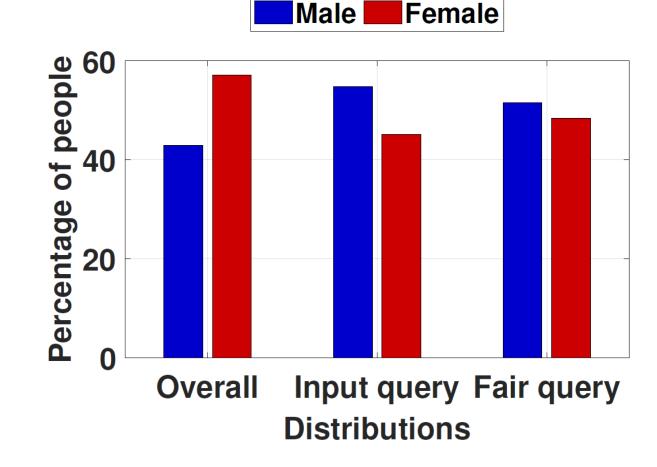
Breadth First Search Approach

- Explore ranges near the input range query, to find the most similar fair range query
- Number of ranges explored before finding the most similar play a critical role in defining the time taken

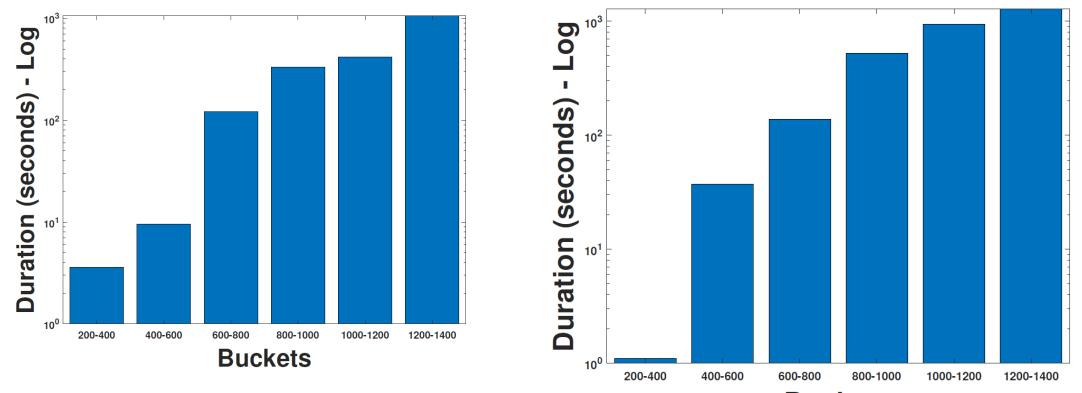

Informed Best First Search

- We define a heuristic to provide an upper bound on the similarity if one of the neighboring range is explored
- Instead of exploring ranges uninformed, A*-based approach to explore ranges based on the heuristic

Explore those ranges which have more potential to reach optimum before others


Experiments – single predicate

- Single predicate query
- Time taken directly proportional to disparity for both weighted and unweighted



Experiments PoC

- Texas Tribune dataset
- Change in demography in input query, overall population and our query

Experiments multi-predicate

Buckets

Thank you