
 
Causality As a double edge Sword

Gainisattini
observation can be different from action
eg Ice cream shop

temperature

F
How

toadal.iqvarioJmodels
Structural Causal Model

noise variables

A program with
a Sequence for

If 0 0 route R elseRz
fÉ É okfrom the indeprandom noise

variables
if V2 1 4 1u Uk else

y

Occident



Formal Definition
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SCGraph is a DAG
SCGraph is a Baysian Network
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Interventions Causal Effect
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not
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Average Treatment Effect

If you change the value of a treatment
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Average effect on
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Confounding Shows the disagreement between the
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P Y do x Ply X
Confounding Effect No causal information shown
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Chain X Y Z removes indirect causal
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Backdoor Path enables the flow of
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Step 2
There is no direct effect from

to Y
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The above argument can be
misleading

Condition Can be violated ifis a Collider
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Systematic Policies Design Policies that
change
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