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1 Introduction to Clustering
Clustering is a fundamental concept with wide-ranging applications across machine learning, data mining,
and other fields such as sociology and biology. At its core, clustering involves grouping a set of elements
based on some notion of similarity. However, its definition and implementation vary depending on the
context.

Definition 1 (Clustering). Given a universe of elements U = {e1, e2, . . . , en}, a clustering is a parti-
tioning of U into k subsets, C = {C1, C2, . . . , Ck}, such that

⋃k
j=1 Cj = U and Ci ∩ Cj = ∅ for all

i ̸= j.

This definition assumes a hard partition, where each element belongs to exactly one cluster. However,
some applications use a soft (fuzzy) partition, where elements have a probability of belonging to each
cluster. A well-known example is the Gaussian Mixture Model (GMM), which assigns membership
probabilities based on a mixture of Gaussian distributions. In this scribe, we focus on hard partitioning,
particularly center-based clustering.

1.1 Types of Hard Partitioning
Hard clustering can be categorized into three main types:

1. Center-Based Clustering: k cluster centers are selected, and each element is assigned to the
nearest center based on a distance metric, typically Euclidean distance.

2. Hierarchical Clustering: U is partitioned using a tree-like structure, either bottom-up (agglom-
erative) or top-down (divisive).

3. Density-Based Clustering: Clusters are formed by identifying connected regions of high density,
e.g., DBSCAN.

Here, we narrow our focus to center-based clustering, specifically the k-means algorithm, and explore
fairness within this framework.

1.2 Center-Based Clustering
In center-based clustering, we select k centers c1, c2, . . . , ck ∈ Rd and assign each element ei ∈ U to the
cluster with the nearest center. Let δ(ei, cj) = ∥ei − cj∥2 denote the Euclidean distance (i.e., p = 2 in
the Lp-norm). The objective is to minimize an aggregate function over these distances, such as the sum
in k-means:

Objective: min
C1,...,Ck

k∑
j=1

∑
ei∈Cj

δ(ei, cj)
2.

Variants like k-center (minimize the maximum distance) or k-median (minimize the sum of distances)
use different aggregate functions.
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2 Fairness in Center-Based Clustering
Fairness in clustering addresses biases or disparities in how elements are grouped or how resources are
allocated based on cluster assignments. We consider group fairness, where each element ei ∈ U belongs
to a demographic group gi ∈ G = {g1, g2, . . . , gm}, and fairness ensures (almost) equitable treatment
across groups.

2.1 Demographic Parity (Balance)
Consider a scenario where cluster assignments confer advantages (e.g., promotions) or disadvantages, and
group membership is known but outcome labels are not. A fair clustering might aim for demographic
parity, ensuring each cluster’s group proportions mirror the overall population.

Definition 2 (Balance). A clustering C = {C1, . . . , Ck} satisfies balance if, for all groups gi ∈ G and
clusters Cj ∈ C,

|gi|
|U |

=
|gi ∩ Cj |
|Cj |

.

This strict condition is often impractical, so a relaxed version allows an additive error α ≥ 0:∣∣∣∣ |gi||U |
− |gi ∩ Cj |

|Cj |

∣∣∣∣ ≤ α.

Example 1. Suppose U represents employees, clusters determine promotion eligibility, and G denotes
demographic groups. Balance ensures promotion opportunities are proportionally distributed across
different demographic groups.

2.2 Fair Resource Allocation
In another scenario, cluster centers represent facilities (e.g., MRI devices), and each element accesses
only its cluster’s center. A fairness issue arises when dense regions receive more centers, forcing sparse
regions to travel farther. Additionally, overloading a center (e.g., too many patients per MRI) degrades
service quality.

Definition 3 (Socially Fair Clustering). A clustering is socially fair if the average distance from elements
in each group to their assigned center is equal across groups. Formally, for each group gi ∈ G and centers
c1, . . . , ck,

1

|gi|
∑
e∈gi

δ(e, cassign(e)) = constant for all gi,

where cassign(e) is the center assigned to e.

2.3 Fair Center Selection
Suppose centers represent selected entities, each associated with a demographic group. Fairness in center
selection requires the selected center’s group distribution to reflect the overall population.

Definition 4 (Fair Center Selection). A set of k centers {c1, . . . , ck} satisfies fair center selection if, for
each group gi ∈ G, the proportion of centers from gi approximates its population proportion:

|{cj : cj ∈ gi}|
k

≈ |gi|
|U |

.

Alternative fairness objectives might use the maximum (instead of average) distance or group repre-
sentation as the aggregate function.

3 Socially Fair k-Means Clustering
The standard k-means algorithm, known as Lloyd’s heuristic, is a commonly used approach for solving
the k-means clustering problem. It proceeds as follows:

1. Select k centers c1, . . . , ck randomly from U .
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Figure 1: Two demographic groups are shown with blue and purple. The 2-means objective minimizing
the average clustering cost prefers the clustering (and centers) shown in the left figure. This clustering
incurs a much higher average clustering cost for purple than for blue. The clustering in the right figure
has a more equitable clustering cost for the two groups [2]. The figure is from [2].

2. Repeat until convergence:

(a) Assign each ei ∈ U to the nearest center: Cj = {ei : δ(ei, cj) ≤ δ(ei, cj′) for all j′}.
(b) Update each center cj to the centroid of Cj : cj =

1
|Cj |

∑
ei∈Cj

ei.

3.1 Socially Fair Variant
Now, we focus on discussing the socially fair k-means clustering, explaining the approach taken in [2].
To incorporate social fairness, we modify k-means to minimize the maximum average distance of any
group to its center, rather than the overall average distance. Although this definition is not exactly
equivalent to what we defined as "socially fair" in Definition 3, it is intuitively acceptable that in many
cases, minimizing the maximum average distance is similar to making the average distances equal for
all the groups as it is desired according to Definition 3. An example is shown in Figure 1. Note that
this intuition is only true when there is no restriction on the cluster centers, and any point in the plane
(continuous) can be chosen as a cluster center. Therefore, we focus on the problem defined below. For
each cluster Cj and group gi, define the group-specific average distance:

d(gi, cj) =
1

|gi ∩ Cj |
∑

e∈gi∩Cj

δ(e, cj).

The objective becomes:
min

c1,...,ck
max

gi∈G,j∈{1,...,k}
d(gi, cj).

To solve this problem, we can take an approach similar to the Lloyd’s algorithm, referred to as Fair
Lloyd Algorithm. The only essential difference in the Fair version of the algorithm is in step (b), where
instead of updating each cj to be the centroid of the points in Cj , it is updated so that the average
distance of points of every color to the new cj , is equal.

1. Select k centers c1, . . . , ck randomly from U .

2. Repeat until convergence:

(a) Assign each ei ∈ U to the nearest center: Cj = {ei : δ(ei, cj) ≤ δ(ei, cj′) for all j′}.
(b) Update each center cj such that 1

|gi1∩Cj |
∑

e∈gi1∩Cj
δ(e, cj) = 1

|gi2∩Cj |
∑

e∈gi2∩Cj
δ(e, cj), for

every pair of groups gi1 , gi2 ∈ G, where gi1 ∩ Cj ̸= ∅, and gi2 ∩ Cj ̸= ∅.

The point cj in step (b) almost (under some mild assumptions) always exists [2]. The main problem
is to find such a point efficiently. Interestingly, when there are only two demographic groups (|G| = 2),
this could be done efficiently [2] using a simple approach. The high-level idea is as follows. Assume that
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there are two demographic groups g1 and g2. For each Cj , let p1 (resp. p2) be the centroid of the points
in g1 ∩ Cj (resp. g2 ∩ Cj). It can be shown that the point cj in step (b) of the Fair-Lloyd’s algorithm
always lies on the line connecting p1 and p2 [2]. The points p1 and p2 can be found in O(n) by traversing
all the data points. To find the point cj on this line, a binary search can be performed.

For the case where there are more than two groups (|G| > 2), a more complicated approach is
presented in [2].

4 Conclusion
Fairness in clustering extends traditional objectives to ensure equitable outcomes across demographic
groups. From demographic parity to socially fair resource allocation and center selection, these notions
address real-world biases in applications like facility placement and decision-making. In this note, we
reviewed some of the definitions used in the literature for introducing fairness to some of the clustering
problems. Finally, we discussed the algorithm of [2] for solving the socially fair variant of the k-means
clustering. An interested reader is referred to [1] for a survey on fairness in clustering problems.
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