
Apr 7, 2025 Lecture Note: Bias in Cherry-picked Data Presentation

[Devendra Seelamneni, Aryan Rao Neelagiri]

CS 516: Responsible Data Science and Algorithmic Fairness; Spring 2025
Abolfazl Asudeh; www.cs.uic.edu/∼ asudeh/teaching/archive/cs516spring25/

1 Introduction
Cherry-picking involves selecting specific data points or timeframes along with weighting schemes
to support a preferred outcome rather than reveal genuine realities. Such practices produce po-
litical narrative distortions by focusing on single trends while adjusting weights in university and
product rankings and orchestrating news presentation sequences to subtly influence public perspec-
tives. The analysis evaluates news ordering together with trendline statements and linear rank-
ings through a perturbation-based support measure which determines the stability of conclusions
against alternative scenarios. Both systematic approaches determine the stability of original results
through perturbation analysis while Monte Carlo sampling provides efficient confidence-bound es-
timates for impossible exhaustive checks. The optimization procedures find the most typical trends
and rankings together with story sequences that satisfy average-case neutrality and worst-case bias
constraints. The tools establish a systematic framework to identify and fight against cherry-picking
in multiple applications.

2 Common Preliminaries & Support Framework
1. Region of Interest (U). The universe of all valid alternatives for a given analysis:

• Trendlines: all (begin, end) date pairs within a president’s term.
• Rankings: all weight vectors within prescribed bounds.
• News feeds: all permutations of the headline list.

2. Perturbation-Based Support. Given reported outcome O and region U , define

ωU (O) =

∣∣{u ∈ U | O(u) remains equivalent to O}
∣∣

|U |
.

A low ωU (O) signals cherry-picking.

3. Statistical Estimation via Sampling. When |U | is too large to enumerate, draw N
random elements ui ∈ U . Let

Xi =

{
1, O(ui) supports O,

0, otherwise.
ω̂ =

1

N

N∑
i=1

Xi, e = Z1−α
2

√
ω̂(1− ω̂)

N
.

Then [ω̂ − e, ω̂ + e] is a (1− α)% confidence interval for ωU (O).

3 Cherry-Picked News Ordering
When two stories appear back-to-back, the first can prime opinions about the second—an effect
known as opinion priming. A cherry-picked ordering exploits this by placing particular headlines
adjacently to induce a desired overall impression. The twin objectives are:

1. Detection: Decide if a given ordering exhibits unusually strong priming compared to random
shuffles.

2. Resolution: Find a reordering that minimizes priming under average-case or worst-case
criteria.

1

https://www.cs.uic.edu/~asudeh/teaching/archive/cs516spring25/

3.1 Model & Formal Definitions
• POP function ϕ : t × t → [0, 1]. ϕ(Ci, Cj) measures intrinsic priming when Ci, Cj are

adjacent.

• Decay δ : N → [0, 1]. δ(d) models attenuation with distance d, δ(1) = 1.

• Pairwise neutrality
ηij = 1− δ

(
|s(Ci)− s(Cj)|

)
ϕ(Ci, Cj).

For t = {C1, . . . , Cn} and ordering s, the neutrality under aggregation agg is

Neutagg(s) = agg{ηij | 1 ≤ i < j ≤ n}.

3.2 Cherry-Picking Detection
1. Sample A random permutations via Fisher–Yates.

2. Compute νk = Neutagg(sk), obtain sample mean ν̄ and standard deviation f .

3. Let ν∗ = Neutagg(s). By the Saw–Yang–Mo inequality,

λ =
|ν∗ − ν̄|

f

√
A

A+ 1
, Pr

(
|ν∗ − ν̄| ≥ f λ√

A/(A+1)

)
≤ 1

λ2
+

1

A
.

4. Conclude s is cherry-picked if the right-hand side is below your tolerance.

3.2.1 Example: Detection on Six Items

• Consider the presented ordering

s0 = ⟨t1, t3, t4, t2, t5, t6⟩.

Its average-neutrality score is Neutavg(s0) = 0.62.

• Draw A = 20 random shuffles. Compute their neutralities: ν̄ ≈ 0.82, f ≈ 0.05.

• Compute λ ≈ |0.62−0.82|
0.05

√
20
21 ≈ 8.7 so the upper bound on the tail probability is ≤ 1/8.72 +

1/20 ≈ 0.03.

• Since 3% is below a typical significance threshold, conclude s0 is likely cherry-picked.

3.3 Maximizing Neutrality Under Average Aggregation
The average aggregation scores an ordering by computing the pairwise priming risk for every pair
of headlines and then averaging these values. A perfectly neutral feed therefore attains a score of 1,
indicating that no two stories prime each other. Maximising this measure is equivalent to finding a
Hamiltonian path whose total edge-weight (sum of pairwise neutralities) is PathMaxTSP, which
is NP-hard. To tackle this, we were introduced to three approximation algorithms ApproxMat,
ApproxCC, and Approx3CC; these efficiently construct near-optimal orderings.

3.3.1 PathMaxTSP

Finding a Hamiltonian path of maximum total neutrality (sum of edge-weights) is NP-hard. We
have three approximation algorithms.

Iterated Matching (ApproxMat) ApproxMat executes a max-weight matching on the cur-
rent graph, then merges each matched pair into a “super-node” path. Any unmatched vertex (when
|V | is odd) is carried forward unchanged. It then rebuilds a smaller graph whose nodes are these
super-nodes, with edge-weights equal to the maximum neutrality between their endpoints, and
repeats until a single super-node remains. That final super-node implicitly encodes a Hamiltonian
path. The very first matching already captures at least 50% of the optimum, and the full procedure
runs in O(n4) time using Edmonds’ blossom algorithm for matching.

2

Example 3.3.1.1

1. Iteration 1: Graph on {t1, . . . , t6} has pairwise neutrality weights as in Figure 1a. Compute
max-weight matching

{(t1, t3) = 0.8, (t2, t4) = 0.3, (t5, t6) = 1.0}.

Merge each pair into super-nodes SA = [t1, t3], SB = [t2, t4], SC = [t5, t6].

2. Iteration 2: Build graph on {SA, SB , SC}, with edge-weights the maximum neutrality be-
tween endpoints. The max-weight matching is (SB , SC) via edge (t4, t5) = 1.0. Merge into

SD = [t2, t4, t5, t6],

leaving {SA, SD}.

3. Iteration 3: Only matching is (SA, SD) via (t1, t2) = 1.0. Orient and merge to obtain the
final path

⟨t3, t1, t2, t4, t5, t6⟩.

Its adjacencies have weights {0.7, 1.0, 0.3, 1.0, 1.0}, summing to 4.1, so

Neutavg = 4.1/5 = 0.82.

Figure 1: ApproxMat iterations. (a) initial matching, (b) second iteration, (c) third iteration.

Iterated Cycle-Cover (ApproxCC) ApproxCC begins by computing a max-weight cycle
cover in O(n3) time via reduction to a bipartite matching (Hungarian method). It then deletes the
lightest edge from each cycle producing disjoint paths and treats each path as a super-node, and
reconnects them by their heaviest endpoint edges to form a new condensed graph. Repeating until
one super-node remains yields a Hamiltonian path. By removing only the weakest edge in each
cycle, it retains at least 50% of the maximum weight and runs in O(n3), improving on ApproxMat’s
O(n4).

Example 3.3.1.2

1. Iteration 1: Max-weight cycle cover {(t1, t2, t3), (t4, t5, t6)}. Remove the lightest edge from
each cycle (e.g. (t1, t2) and (t5, t6)) to form paths.

2. Iteration 2: On the four resulting super-nodes, compute the max-weight cycle cover and
remove its lightest link (e.g. (t6, t3)), yielding the single super-node whose internal order is
⟨t3, t1, t2, t4, t5, t6⟩.

Its adjacencies have weights {0.7, 1.0, 0.3, 1.0, 1.0}, summing to 4.1, so

Neutavg =
4.1

5
= 0.82.

3

Figure 2: ApproxCC on six items.

3-Cycle-Cover (Approx3CC) Approx3CC is analogous to ApproxCC but restricts its cycle
cover to cycles of length at least 3. One reduces the 3-cycle-cover problem to a larger matching
instance, solves it in O(n7) time, removes the lightest edge from each 3-cycle to form paths, and
merges as before. This extra restriction raises the approximation guarantee from ½ to 2/3, at the
cost of higher O(n7) runtime.
Algorithm:

1. 3-cycle-cover reduction: Build an expanded auxiliary graph (via Tutte/Eppstein gadgetry)
in which each perfect matching corresponds one-to-one with a 3-cycle cover in the original
graph.

2. Solve matching: Run Edmonds’ blossom algorithm on the auxiliary graph in O(n7) to obtain
a max-weight matching, hence a max-weight 3-cycle cover.

3. Edge pruning: In each 3-cycle, delete its lightest edge and turning every cycle into a path of
length 2.

4. Path concatenation: Arbitrarily join the resulting small paths end-to-end to form a single
Hamiltonian path. This path has total weight at least 2

3 ·OPT.

Trade-off: The improved 2/3 approximation guarantee incurs a steep O(n7) time cost. By con-
trast, ApproxMat runs in O(n4) and ApproxCC in O(n3), so Approx3CC is primarily of
theoretical interest or only viable on small graphs.

3.4 Maximizing Neutrality Under Min Aggregation: PathMaxScatterTSP
The minimum-edge neutrality objective is finding a Hamiltonian path whose weakest adjacency
is as large as possible, defines the PathMaxScatterTSP. As no polynomial-time constant-factor
approximation exists (unless P=NP), we were proposed by a practical heuristic that binary-searches
an edge-neutrality threshold X and uses a fast local-search oracle to test feasibility.

Algorithm

1. Threshold test (IsFeasible): Given X, form graph G′ on the same vertices where each
edge of original neutrality w has cost

cost(e) =

{
0, w ≥ X,

X − w, w < X.

A zero-cost Hamiltonian cycle in G′ implies every edge in the corresponding cycle in G has
neutrality ≥ X.

2. Local search (2-opt): Run the classic 2-opt TSP heuristic on G′ to seek a zero-cost cycle.
Because 2-opt is “any-time,” it can be halted early if desired.

3. Binary search over X: Sort the distinct original neutralities {we}. Use binary search
on this sorted list, calling IsFeasible at each midpoint, to find the largest X for which a
zero-cost cycle is found.

4. Path extraction: Given the zero-cost cycle at threshold X, remove its lightest edge to
obtain a Hamiltonian path whose minimum adjacency neutrality is ≥ X.

5. Early-cut option: Optionally cap 2-opt at k swaps for faster but potentially slightly sub-
optimal X.

4

Empirical performance This heuristic is the first effective solver for PathMaxScatterTSP in
practice. By trading off local-search effort against threshold precision, it outperforms random
sampling, achieves near-optimal weakest-edge values on graphs up to n = 70, and allows users to
dial run-time versus solution quality via the 2-opt iteration limit.

4 Cherry-Picked Trendlines
Trendlines are fundamental tools to summarize and visualize the change of a variable over time.
In many fields like economics, epidemiology, and political analysts draw a line between two dates
to "tell the story." However, when an analyst deliberately selects those two dates to make a trend
appear stronger (or weaker) than the overall data supports, this is known as cherry-picking.

4.1 Intuition and Pitfalls
A single trendline can be very misleading if the data have high variability. For example, unem-
ployment rates might fluctuate seasonally; choosing a high initial point in winter and a low ending
point in summer exaggerates a "drop." Without examining other pairs, the audience is misled.

4.2 Formal Definitions
Let D = {(ti, yi)} be a time series, where ti are sorted time points and yi are observations.
A trendline θ = (b, e) uses two indices b < e, connecting (tb, yb) to (te, ye).
A statement Sθ asserts a change:

ye − yb ∈ (⊥,⊤),

where (⊥,⊤) defines a condition (e.g., negative for a "drop").

4.3 Support Measure
To quantify how representative a chosen trendline is, define the support region

RS = R(b)×R(e),

where R(b), R(e) are sets of valid start/end indices (e.g., all dates within a presidential term). The
support of statement S is

ωRS
(S,D) =

∣∣{(i, j) ∈ R(b)×R(e) : yj − yi ∈ (⊥,⊤)}
∣∣

|R(b)| · |R(e)|
.

A small ω (e.g. < 0.1) indicates that under most valid alternatives, the statement fails—an alarm
for cherry-picking.

4.4 Detection Algorithm (O(nlog n))
Rather than enumerating all |R(b)| × |R(e)| pairs, we sort and binary-search:

Step 1: Sort values {yj : j ∈ R(e)} into an array F [1..m] in ascending order.

Step 2: For each i ∈ R(b):

• Compute bounds L = yi +⊥ and H = yi +⊤.
• Find via binary search the first index ℓ with F [ℓ] ≥ L, and the last index r with
F [r] ≤ H.

• The count of supporting ends is wi = max(0, r − ℓ+ 1).

Step 3: Sum W =
∑

i∈R(b) wi. The support is ω = W/(|R(b)| |R(e)|).

5

4.5 Conceptual View: Support Computation Using Trendline Regions
To build a deeper intuition about trendline-based support, consider a time series where we wish to
analyze how many potential trendlines satisfy a desired change condition. Specifically, we examine
how regions of valid start and end points can be used to count the proportion of trendlines that
meet a threshold for instance, a minimum increase of α units over time.

Let y(p) denote the value at point p. For each p ∈ R(b), we want to count the number of
p′ ∈ R(e) such that:

y(p′)− y(p) ≥ α.

We define this set as Rp(e), the supporting end points for a specific start p. The baseline
algorithm computes the total number of such valid pairs by iterating over all start points and
checking against all end points, resulting in O(n2) time.

x (Time)

y (Value)

R(b) R(e)

dxb
Rdxb(e)

Figure 3: For a given point dxb ∈ R(b), all points dxe ∈ R(e) where y(dxe)− y(dxb) ≥ α form the
support region Rdxb(e).

To optimize this, we exploit the structure: if y(dxb1) < y(dxb2), then Rdxb1(e) ⊇ Rdxb2(e).
That is, lower-valued start points are likely to have more supporting ends.

Instead of re-evaluating from scratch for each start point, we can process them in increasing y
order and incrementally build the support counts. Even better, we use a cumulative function F :

F (y) = |{p′ ∈ R(e) | y(p′) < y}|.

Then for a given p ∈ R(b), the number of supporting ends is:

wp = |R(e)| − F (y(p) + α).

This allows efficient binary search over sorted y values from R(e), giving overall runtime
O(n log n). The total support is then:

ω =
1

|R(b)||R(e)|
∑

p∈R(b)

wp.

This optimization forms the core of the detection algorithm described earlier.

4.6 Illustrative Example
We consider an example to demonstrate how to compute the support of a statement about a drop
in unemployment rate:

• Start points (R(b)): Jan, Feb, Mar with rates 7.2, 7.0, 6.9

• End points (R(e)): Jul, Aug, Sep with rates 6.3, 6.4, 6.6

• Target condition: y(e)− y(b) ≤ −0.5 (i.e., drop of at least 0.5)

6

For each start point, we compare against each end point to check if the drop meets the condition:

• Jan (7.2): All of Jul (6.3), Aug (6.4), Sep (6.6) satisfy y(e) ≤ 6.7 → 3 matches

• Feb (7.0): Jul (6.3), Aug (6.4) satisfy y(e) ≤ 6.5 → 2 matches

• Mar (6.9): Jul (6.3), Aug (6.4) satisfy y(e) ≤ 6.4 → 2 matches

Total matches = 3 + 2 + 2 = 7. Total combinations = 3× 3 = 9. Thus,

ω =
7

9
≈ 0.78

This support score is fairly high, meaning the trendline from Jan to Jul is not cherry-picked;
many other date combinations also support the same "drop" statement.

4.7 Resolution via Sliding Window (O(n2))

To find the most supported statement, enumerate all differences

L = {yj − yi : (i, j) ∈ R(b)×R(e)},

sort L, then slide a width-d window (where d = ⊤−⊥) to maximize the number of elements inside.
This identifies the change interval most representative of the entire region.

5 Cherry-Picked Rankings
Rankings are commonly derived from weighted combinations of features, be it in university com-
parisons, product scores, or performance assessments. However, the final ranking is highly sensitive
to the weight vector used. This raises a critical question: could a particular ranking be the result
of cherry-picked weights rather than a fair evaluation? To address this, we analyze the angular
stability of rankings by studying how the order changes as the weight direction varies in the dual
space.

5.1 Motivation and Dual-Space Geometry
Given d = 2 features, each item i with values (xi1, xi2) maps to a line

xi1w1 + xi2w2 = 1

in the weight space (w1, w2). A ranking corresponds to ordering these lines by distance along a
ray from the origin. As the ray angle θ rotates, the ranking changes only at flip angles where two
lines intersect.

5.2 Flip Angle Computation
For adjacent items i and j, solve:

w1xi1 + w2xi2 = w1xj1 + w2xj2 =⇒ θij = arctan
xj1 − xi1

xi2 − xj2
.

Each θij marks a boundary of the region where the ranking order of i and j flips.

5.3 Support Measure
Let U = [θb, θe] be the allowed angle range. The support of a fixed ranking r is

ωU (r) =
θe(r)− θb(r)

θe − θb
,

where [θb(r), θe(r)] is the maximal contiguous angle interval over which r remains constant.

7

5.4 Detection Algorithm (O(n))
Compute all needed θi,i+1 for adjacent pairs in an observed ranking r:

1. For ranking r = (t1, ..., tn), compute θi,i+1 if ti and ti+1 are incomparable.
2. Set θmin = max of all lower-bound angles, and θmax = min of upper-bound angles.
3. Support is (θmax − θmin)/(θe − θb).

5.5 Illustrative Example: Cherry-Picked Ranking
Consider a company that wants to rank five real estate agents based on two attributes:

• x1: Customer Satisfaction

• x2: Sales Volume

The company uses a linear scoring function:

f(t) = w1 · x1 + w2 · x2

with weight vector w⃗ = ⟨1.1, 1.3⟩, giving slightly more importance to sales.

The computed scores and resulting ranking are as follows:

Agent Customer Satisfaction (x1) Sales (x2) Score f(t)
t1 0.63 0.71 1.34
t2 0.83 0.65 1.48
t3 0.58 0.78 1.36
t4 0.70 0.68 1.38
t5 0.53 0.82 1.35

Table 1: Agent attributes and scores using f(t) = 1.1x1 + 1.3x2

The induced ranking is:
t2 > t4 > t3 > t5 > t1

While this ranking is valid, its stability is questionable. Slightly changing the weights (e.g.,
using w⃗′ = ⟨1.2, 1.2⟩) can shift the entire order. This sensitivity suggests the original ranking might
be cherry-picked.

Geometric Interpretation (Dual Space)

In the dual space:

• Each agent t becomes a line: d(t) : t[1]x1 + t[2]x2 = 1

• The scoring function becomes a ray from the origin in the direction w⃗

• The order in which the ray intersects the lines determines the ranking

x1

x2

w⃗ = ⟨1.1, 1.3⟩

d(t1)

d(t2)
d(t3)d(t4)
d(t5)

Scoring ray intersects lines

Figure 4: Dual space: agents as lines; rankings determined by order of intersections

8

Support of a Ranking

The ranking generated by w⃗ lies within a narrow region in weight space. We define:

ωU (r) =
Volume of Region Producing r

Total Region of Interest U

A low support value implies the ranking only occurs under very specific weight choices indicating
potential cherry-picking. In this case, the ranking has low support, as even a small change in w⃗
alters the outcome.

This geometric analysis makes it possible to detect unstable (and thus cherry-picked) rankings
without needing to enumerate all weights.

5.6 Resolution Algorithm (O(n2 log n))

To find the most supported ranking:

1. Compute all flip angles θij among item pairs.
2. Insert them into a min-heap sorted ascending.
3. Initialize ranking at θb, and sweep by popping events:

• At each θ, swap the involved items in the current ranking.
• Track the angular span until the next flip.

4. Return the ranking with maximal total span.

6 Sampling-Based Approximation
Exact methods can be computationally costly when |R| or d is large. Monte Carlo sampling offers
efficient approximate support estimates.

6.1 Trendline Sampling
Sample N random pairs (i, j) uniformly from R(b)×R(e). Define indicator:

Xk =

{
1 yj − yi ∈ (⊥,⊤),

0 otherwise.

Then estimate

ω̂ =
1

N

N∑
k=1

Xk, e = Z1−α/2

√
ω̂(1−ω̂)

N .

6.2 Ranking Sampling
For d > 2 features, sample N weight vectors wk from a spherical cone in Rd around a nominal
direction. For each, compute ranking rk and tally frequencies. The top ranking r∗ has empirical
support

ω̂(r) =
#{k : rk = r}

N
, e = Z1−α/2

√
ω̂(1−ω̂)

N .

7 Conclusion
A unified perturbation-based support metric quantifies cherry-picking across news ordering, trend-
line statements, and linear rankings. Neutrality maximization is cast as two graph problems Path-
MaxTSP (average-case) and PathMaxScatterTSP (worst-case) with 1

2 - and 2
3 -approximation

or heuristic solvers. Trendline support is computed in O(n log n) via binary search (or O(n2) by
a sliding-window), and ranking stability via angular-span analysis. Monte Carlo sampling delivers
fast, confidence-bounded estimates at scale. Extending to richer decay models, adaptive sampling
for extreme supports, and high-dimensional or multi-objective orderings will broaden applicability
and strengthen defenses against subtle data manipulations.

9

	Introduction
	Common Preliminaries & Support Framework
	Cherry‑Picked News Ordering
	Model & Formal Definitions
	Cherry‑Picking Detection
	Example: Detection on Six Items

	Maximizing Neutrality Under Average Aggregation
	PathMaxTSP

	Maximizing Neutrality Under Min Aggregation: PathMaxScatterTSP

	Cherry‑Picked Trendlines
	Intuition and Pitfalls
	Formal Definitions
	Support Measure
	Detection Algorithm (O(nn))
	Conceptual View: Support Computation Using Trendline Regions
	Illustrative Example
	Resolution via Sliding Window (O(n2))

	Cherry‑Picked Rankings
	Motivation and Dual-Space Geometry
	Flip Angle Computation
	Support Measure
	Detection Algorithm (O(n))
	Illustrative Example: Cherry-Picked Ranking
	Resolution Algorithm (O(n2n))

	Sampling-Based Approximation
	Trendline Sampling
	Ranking Sampling

	Conclusion

