Markov inequality: Consider any Prob. distribution with expected
Value
$$E[X]$$

 $P(X \ge t) \le \frac{E[X]}{t}$

Proof z

$$f(x) = \begin{cases} i & \text{if } x \ge t \text{ ; i.e. } x_{t} \ge 1 \\ i & \text{otherwise.} \end{cases}$$

$$P(X \ge t) = P(f(x) = 1) = E[f(x)] \quad x_{t} \ge f(t)]$$

$$\leq E[x_{t}] \quad z \ge f(t)$$

$$= \frac{E[x_{t}]}{t}$$

Example:
$$R-Q-Sort$$
:
what is the prob. of multime $\geq \frac{n^2}{C}$
Using Markov ineq.?

.

Using Markov inequality:

$$P(T \ge p \ n \ ln(n)) \le \frac{1}{p} \frac{1}{2} \frac{1$$