> 34.5-2

Given an integer $m \times n$ matrix A and an integer m-vector b, the 0-1 integer-programming problem asks whether there is an integer n-vector x with elements in the set $\{0, 1\}$ such that $Ax \leq b$. Prove that 0-1 integer programming is NP-complete. (Hint: Reduce from 3-CNF-SAT.)

34.5-3

The *integer linear-programming problem* is like the 0-1 integer-programming problem given in Exercise 34.5-2, except that the values of the vector x may be any integers rather than just 0 or 1. Assuming that the 0-1 integer-programming problem is NP-hard, show that the integer linear-programming problem is NP-complete.

34.5-5

The set-partition problem takes as input a set S of numbers. The question is whether the numbers can be partitioned into two sets A and $\overline{A} = S - A$ such that $\sum_{x \in A} x = \sum_{x \in \overline{A}} x$. Show that the set-partition problem is NP-complete.

34.5-6

Show that the hamiltonian-path problem is NP-complete.

34.5-7

The *longest-simple-cycle problem* is the problem of determining a simple cycle (no repeated vertices) of maximum length in a graph. Show that this problem is NP-complete.

34.5-8

In the half 3-CNF satisfiability problem, we are given a 3-CNF formula ϕ with n variables and m clauses, where m is even. We wish to determine whether there exists a truth assignment to the variables of ϕ such that exactly half the clauses evaluate to 0 and exactly half the clauses evaluate to 1. Prove that the half 3-CNF satisfiability problem is NP-complete.

34-4 Scheduling with profits and deadlines

Suppose you have one machine and a set of n tasks a_1, a_2, \ldots, a_n . Each task a_j has a processing time t_j , a profit p_j , and a deadline d_j . The machine can process only one task at a time, and task a_j must run uninterruptedly for t_j consecutive time units. If you complete task a_j by its deadline d_j , you receive a profit p_j , but if you complete it after its deadline, you receive no profit. As an optimization problem, you are given the processing times, profits, and deadlines for a set of n tasks, and you wish to find a schedule that completes all the tasks and returns the greatest amount of profit.

- a. State this problem as a decision problem.
- b. Show that the decision problem is NP-complete.
- c. Give a polynomial-time algorithm for the decision problem, assuming that all processing times are integers from 1 to n. (Hint: Use dynamic programming.)
- d. Give a polyomial-time algorithm for the optimization problem, assuming that all processing times are integers from 1 to n.