Mining the Minoria: Unknown, Under-represented, and Under-performing Minority Groups

Mohsen Dehghankar, Abolfazl Asudeh

University of Illinois Chicago {mdehgh2, asudeh}@uic.edu

51st International Conference on Very Large Data Bases September 1-5, 2025 – London, United Kingdom Research Track 21 – Specialized and Domain-Specific Data Management

- Motivation
- 2 Problem Definition
- 3 Solution Overview
- 4 Highlighted Experiments

Motivation Example: A data-sharing platform

- Before sharing their datasets, Chicago Open Data Portal would like to specify groups that are *under-represented* & *under-performing*.
- This is to limit the scope of use of shared datasets.
- Challenge:
 - The datasets either do not include grouping attributes (such as race) or only contain some of those.
 - 2 Targeting a comprehensive audit, they do not want to limit their scope to a small set of predefined groups.
- Goal: To proactively detect any meaningful "problematic" group.

- Motivation
- 2 Problem Definition
- Solution Overview
- 4 Highlighted Experiments

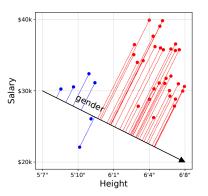
Problem Formulation: Minoria Mining

- Given: a dataset $\mathcal{D} = \{t_i\}^n$, where $t_i = \langle X = \langle \mathbf{x}_1, \cdots, \mathbf{x}_d \rangle, y \rangle$. \mathcal{D} is used for training a model $h_{\theta}(X)$ that predicts y.
- Find: groupings of \mathcal{D} to \mathcal{D}^g (group g) and $\mathcal{D}^{!g}$ (others), s.t.:
 - **1** g is under represented: $|\mathcal{D}^g| \ll |\mathcal{D}|$
 - 2 Predictions based on \mathcal{D} are not accurate for g:

$$\mathbb{E}[L_{\mathcal{D}^{\mathsf{g}}}(\theta)] - \mathbb{E}[L_{\mathcal{D}}(\theta)] \ge \tau$$

Our Approach: Finding high-skew projections

- ullet Find the top- ℓ directions f that yield the highest skew when projecting points
 - Projection: $\mathcal{D}_f = \{t_i^\top f \mid t_i \in \mathcal{D}\}$
- High skew \Rightarrow Small group in the tail \Rightarrow Potential Minoria



Pearson's median skewness

$$skew(\mathcal{D}_f) = \frac{3(\mu - \nu)}{\sigma}$$

- $\mu = \text{mean}, \ \sigma = \text{std. dev.} \ \nu = \text{median}$
- Idea?: The weights are continuous ⇒ Formulate the optimization problem as linear programming (LP)?

- Challenge: What is the median?!
 - Every projection has its own median!

(ロト 4回) 4 差) 4 差) 差 の 9 ()

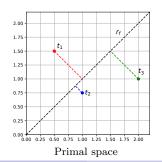
- 1 Motivation
- 2 Problem Definition
- Solution Overview
- 4 Highlighted Experiments

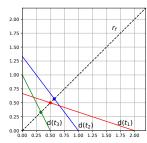
Dual-space transformation

• Dual Space: Tuples $t_i = \langle t_{i_1}, \dots, t_{i_d} \rangle$ represented as hyperplanes:

$$d(t_i): \ t_{i_1}x_1 + \dots + t_{i_d}x_d = 1$$

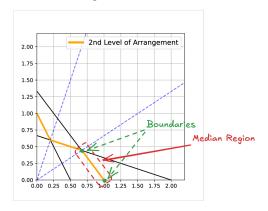
- A projection-direction f in primal \Rightarrow an origin-anchored ray r_f in dual.
- The projection order $\mathcal{D}_f = \{t_i^{\top} f\}$ equals the order of intersections of $d(t_i)$ with r_f .
- We use arrangement of dual hyperplanes, to track the medians.





Median Regions

- A Median Region is a set of directions f that have the same median.
- In dual space, the $\lfloor \frac{n}{2} \rfloor$ -th level of the arrangement partitions directions into median regions.



Preliminary idea for finding the high-skew projections

- Identify the median regions
- For each region, form an LP and solve it to find the highest skew.

- Theoretically Polynomial (in n)
- Not Practical! (Needs to solve many LPs)
- Resolution: Can we avoid the LP optimizations?

Key Theorem

• Theorem: The highest skew happens either in the boundary of median regions or

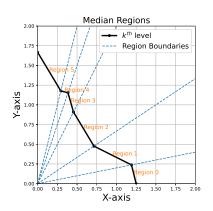
$$f^* = \frac{(QQ^{\top})^{-1}q_{m_f}}{\|(QQ^{\top})^{-1}q_{m_f}\|}, \quad q_i = t_i - \mu(\mathcal{D})$$

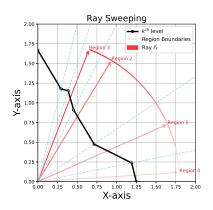
• Result: Enough to check Only a few candidate directions per region.

Minoria Mining in 2D

- Overall approach:
 - ① Build the $\frac{n}{2}$ -th level arrangement $A_{\frac{n}{2}}$.
 - ★ Number of regions = $O(n^{4/3})$
 - **2** Enumerate boundary nodes (and f^* directions) of the median regions.
 - At each node, compute Pearson's skew of its corresponding direction.
- Naïve algorithm: Each skew takes O(n) time.
 - ▶ Time complexity: $O(n \cdot n^{4/3}) = O(n^{\frac{7}{3}})$
- Our algorithm (Ray sweeping): By updating median, mean, and std incrementally, skew can be computed in **constant time**.
 - ▶ Time complexity: $O(n^{\frac{4}{3}})$

Ray Sweeping: Example





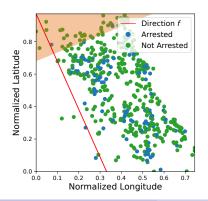
Mining in Higher Dimensions

- Generalized Ray-Sweeping: Works for d > 2 by traversing the $\frac{n}{2}$ -th level arrangement.
 - ▶ Complexity: $O(d \cdot n^d)$ (enumerating $A_{\frac{n}{2}}$ and computing skew).
 - Curse of dimensionality: arrangement size grows exponentially with d.
- **Practical heuristics:** To make the method feasible in higher dimensions, we use:
 - Space discretization: sample directions via grid partitioning or diverse candidate generation.
 - ▶ Exploration & exploitation: balance random search with refinement near promising directions.
 - ► Focused exploration: identify error-prone regions with the model and restrict search around them.

- Motivation
- 2 Problem Definition
- Solution Overview
- 4 Highlighted Experiments

2D Experiments: Chicago Crimes

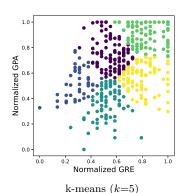
- Dataset: Chicago Crimes (2001–2023), projected on Long & Lat
- Classifier: 1-hidden-layer NN (F1 = 0.72)
- Finding: the top skewed direction aligns roughly North Side; tail shows F1-score significantly drops.



Percentile	F1
1	0.72
0.1	0.62
0.01	0.68
0.001	0.40

Why Not Clustering? (College Admissions)

- k-means clusters have f/m ratios close to the whole data (≈ 1.1)
- Our discovered high-skew tail shows **much higher** female/male ratios (and F1 drops)



$\frac{\text{Percentile}}{(\text{tail }p)}$	Acc.	F1	Female/Male (tail)
1.00 0.50 0.20 0.10 0.08	0.70 0.68 0.67 0.61 0.64	0.48 0.34	1.10 1.12 0.80 2.00 1.81

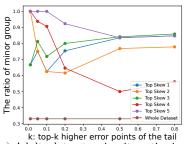
Tail eval on highest-skew direction (skew = 0.07).

Cluster ID	Size	Female/Male
0	92	0.95
1	72	0.94
2	108	1.11
3	45	1.50
4	83	1.24
Total	400	1 10

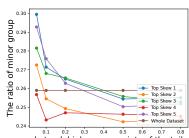
Cluster ratios near dataset baseline.

Experiments in Higher Dimensions: Focused Exploration

- High-skew directions expose hidden minority groups with higher model errors.
- Minority ratios **grow in the tails** (left side of plots), showing errors are not uniformly distributed.
- \bullet Even subtle groups (ratios < 0.3) are systematically highlighted with Focused Exploration algorithm.



k: top-k higher error points of the tail
(a) Adults dataset: minority ratio rises in tail directions.



k: top-k higher error points of the tail (b) Diabetes dataset: subtle minorities (<0.3) still detected.

Thank you, Question?

Dehghankar&Asudeh'25