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Motivation Example: A data-sharing platform

e Before sharing their datasets, Chicago Open Data Portal would like
to specify groups that are under-represented & under-performing.

@ This is to limit the scope of use of shared datasets.

e Challenge:

@ The datasets either do not include grouping attributes (such as race)
or only contain some of those.

© Targeting a comprehensive audit, they do not want to limit their
scope to a small set of predefined groups.

e Goal: To proactively detect any meaningful “problematic” group.
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Problem Formulation: Minoria Mining

o Given: a dataset D = {t;}", where t; = (X = (x1, -+ ,Xq),y).
D is used for training a model hy(X) that predicts y.

e Find: groupings of D to DI (group g) and D'9 (others), s.t.:

Q g is under represented: |D9| < |D|
@ Predictions based on D are not accurate for g:

E{Lps (0)] — E[Lp(6)] > 7
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Our Approach: Finding high-skew projections

e Find the top-¢ directions f that yield the highest skew when

projecting points
» Projection: Dy = {t] f | t; € D}
e High skew = Small group in the tail = Potential Minoria
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Pearson’s median skewness

skew(Dy) = Eld

a

@ i = mean, 0 = std. dev. ¥ = median

o Idea?: The weights are continuous = Formulate the optimization
problem as linear programming (LP)?

o Challenge: What is the median?!
» Every projection has its own median!
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Dual-space transformation

e Dual Space: Tuples t; = (t;,, ..
tiyz1+ -+ tjzqg =1

d(t;) :

., ti,) represented as hyperplanes:

e A projection-direction f in primal = an origin-anchored ray vy in

dual.

o The projection order Dy = {t] f} equals the order of intersections

of d(t;) with ry.

o We use arrangement of dual hyperplanes, to track the medians.
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Median Regions

e A Median Region is a set of directions f that have the same

median.
e In dual space, the |

n

2

|-th level of the arrangement partitions

directions into median regions.

2nd Level of Arrangement
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Preliminary idea for finding the high-skew projections

Q Identify the median regions
@ For each region, form an LP and solve it to find the highest skew.

e Theoretically Polynomial (in n)
e Not Practical! (Needs to solve many LPs)

e Resolution: Can we avoid the LP optimizations?
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Key Theorem

@ Theorem: The highest skew happens either in the boundary of
median regions or

f = TV—1 ! ) Qz:tz—M(D)
QR ")~ gyl
@ Result: Enough to check Only a few candidate directions per

region.
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Minoria Mining in 2D

@ Overall approach:

© Build the 3-th level arrangement An .

2
* Number of regions = O(n*/?)
@ Enumerate boundary nodes (and f* directions) of the median
regions.

© At each node, compute Pearson’s skew of its corresponding direction.

e Naive algorithm: Each skew takes O(n) time.

» Time complexity: O(n -n*/?3) = O(n%)

e Our algorithm (Ray sweeping): By updating median, mean,
and std incrementally, skew can be computed in constant time.
» Time complexity: O(n3)
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Ray Sweeping: Example

Median Regions
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Mining in Higher Dimensions

o Generalized Ray-Sweeping: Works for d > 2 by traversing the
5-th level arrangement.
» Complexity: O(d-n?) (enumerating An and computing skew).
2
» Curse of dimensionality: arrangement size grows exponentially

with d.

e Practical heuristics: To make the method feasible in higher
dimensions, we use:

» Space discretization: sample directions via grid partitioning or
diverse candidate generation.

» Exploration & exploitation: balance random search with
refinement near promising directions.

» Focused exploration: identify error-prone regions with the model
and restrict search around them.
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2D Experiments: Chicago Crimes

Normalized Latitude

e Dataset: Chicago Crimes (2001-2023), projected on Long & Lat
o Classifier: 1-hidden-layer NN (F1 = 0.72)
e Finding: the top skewed direction aligns roughly North Side; tail

shows F'1-score significantly drops.
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Why Not Clustering? (College Admissions)

Normalized GPA

e k-means clusters have f/m ratios close to the whole data (=~ 1.1)

@ Our discovered high-skew tail shows much higher female/male

ratios (and F1 drops)
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Percentile Female/Male
(tail p) Acc. F1 (tail)
1.00 0.70 0.36 1.10
0.50 0.68 0.42 1.12
0.20 0.67 0.48 0.80
0.10 0.61 0.34 2.00
0.08 0.64 0.42 1.81

Tail eval on highest-skew direction (skew = 0.07).

Cluster ID Size Female/Male

0 92 0.95
1 72 0.94
2 108 1.11
3 45 1.50
4 83 1.24
Total 400 1.10

Cluster ratios near dataset baseline.
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Experiments in Higher Dimensions: Focused Exploration

@ High-skew directions expose hidden minority groups with higher model

errors.

@ Minority ratios grow in the tails (left side of plots), showing errors are

not uniformly distributed.

@ Even subtle groups (ratios < 0.3) are systematically highlighted with

The ratio of minor group
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(a) Adults dataset: minority ratio rises in

Focused Exploration algorithm.
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Thank you, Question?
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