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Motivation Example: A data-sharing platform

Before sharing their datasets, Chicago Open Data Portal would like
to specify groups that are under-represented & under-performing.
This is to limit the scope of use of shared datasets.
Challenge:

1 The datasets either do not include grouping attributes (such as race)
or only contain some of those.

2 Targeting a comprehensive audit, they do not want to limit their
scope to a small set of predefined groups.

Goal: To proactively detect any meaningful “problematic” group.

Dehghankar&Asudeh’25 VLDB 2025 3 / 20



Outline

1 Motivation

2 Problem Definition

3 Solution Overview

4 Highlighted Experiments

Dehghankar&Asudeh’25 VLDB 2025 4 / 20



Problem Formulation: Minoria Mining

Given: a dataset D = {ti}n, where ti = ⟨X = ⟨x1, · · · ,xd⟩, y⟩.
D is used for training a model hθ(X) that predicts y.
Find: groupings of D to Dg (group g) and D!g (others), s.t.:

1 g is under represented: |Dg| ≪ |D|
2 Predictions based on D are not accurate for g:

E[LDg(θ)]− E[LD(θ)] ≥ τ
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Our Approach: Finding high-skew projections

Find the top-ℓ directions f that yield the highest skew when
projecting points

▶ Projection: Df = {t⊤i f | ti ∈ D}
High skew ⇒ Small group in the tail ⇒ Potential Minoria
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Pearson’s median skewness

skew(Df) =
3(µ−ν)

σ

µ = mean, σ = std. dev. ν = median
Idea?: The weights are continuous ⇒ Formulate the optimization
problem as linear programming (LP)?

Challenge: What is the median?!
▶ Every projection has its own median!
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Dual-space transformation

Dual Space: Tuples ti = ⟨ti1 , . . . , tid⟩ represented as hyperplanes:

d(ti) : ti1x1 + · · ·+ tidxd = 1

A projection-direction f in primal ⇒ an origin-anchored ray rf in
dual.
The projection order Df = {t⊤i f} equals the order of intersections
of d(ti) with rf .
We use arrangement of dual hyperplanes, to track the medians.
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Median Regions

A Median Region is a set of directions f that have the same
median.
In dual space, the ⌊n2 ⌋-th level of the arrangement partitions
directions into median regions.
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Preliminary idea for finding the high-skew projections

1 Identify the median regions
2 For each region, form an LP and solve it to find the highest skew.

Theoretically Polynomial (in n)
Not Practical! (Needs to solve many LPs)
Resolution: Can we avoid the LP optimizations?
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Key Theorem

Theorem: The highest skew happens either in the boundary of
median regions or

f∗ =
(QQ⊤)−1qmf

∥(QQ⊤)−1qmf
∥
, qi = ti − µ(D)

Result: Enough to check Only a few candidate directions per
region.
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Minoria Mining in 2D

Overall approach:
1 Build the n

2 -th level arrangement An
2
.

⋆ Number of regions = O(n4/3)

2 Enumerate boundary nodes (and f∗ directions) of the median
regions.

3 At each node, compute Pearson’s skew of its corresponding direction.
Naïve algorithm: Each skew takes O(n) time.

▶ Time complexity: O(n · n4/3) = O(n
7
3 )

Our algorithm (Ray sweeping): By updating median, mean,
and std incrementally, skew can be computed in constant time.

▶ Time complexity: O(n
4
3 )
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Ray Sweeping: Example
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Mining in Higher Dimensions

Generalized Ray-Sweeping: Works for d > 2 by traversing the
n
2 -th level arrangement.

▶ Complexity: O(d · nd) (enumerating An
2

and computing skew).
▶ Curse of dimensionality: arrangement size grows exponentially

with d.
Practical heuristics: To make the method feasible in higher
dimensions, we use:

▶ Space discretization: sample directions via grid partitioning or
diverse candidate generation.

▶ Exploration & exploitation: balance random search with
refinement near promising directions.

▶ Focused exploration: identify error-prone regions with the model
and restrict search around them.
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2D Experiments: Chicago Crimes

Dataset: Chicago Crimes (2001–2023), projected on Long & Lat
Classifier: 1-hidden-layer NN (F1 = 0.72)
Finding: the top skewed direction aligns roughly North Side; tail
shows F1-score significantly drops.
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Why Not Clustering? (College Admissions)

k-means clusters have f/m ratios close to the whole data (≈ 1.1)
Our discovered high-skew tail shows much higher female/male
ratios (and F1 drops)
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1.00 0.70 0.36 1.10
0.50 0.68 0.42 1.12
0.20 0.67 0.48 0.80
0.10 0.61 0.34 2.00
0.08 0.64 0.42 1.81

Tail eval on highest-skew direction (skew = 0.07).

Cluster ID Size Female/Male

0 92 0.95
1 72 0.94
2 108 1.11
3 45 1.50
4 83 1.24

Total 400 1.10
Cluster ratios near dataset baseline.
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Experiments in Higher Dimensions: Focused Exploration

High-skew directions expose hidden minority groups with higher model
errors.

Minority ratios grow in the tails (left side of plots), showing errors are
not uniformly distributed.

Even subtle groups (ratios < 0.3) are systematically highlighted with
Focused Exploration algorithm.
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(a) Adults dataset: minority ratio rises in
tail directions.
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(b) Diabetes dataset: subtle minorities
(< 0.3) still detected.

Dehghankar&Asudeh’25 VLDB 2025 19 / 20



Thank you, Question?
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