Rank It, Then Ask It: Input Reranking for Maximizing the Performance of LLMs on Symmetric Tasks

Mohsen Dehghankar

Abolfazl Asudeh

University of Illinois Chicago {mdehgh2, asudeh}@uic.edu

KDD '25: 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining

August 3–7, 2025 – Toronto, ON, Canada

- Motivation
- 2 Problem Formulation
- 3 Solution Overview
- 4 Estimating the Relevance
- 6 Highlighted Experiments

Motivation

Example 1

Consider a publications dataset in the form of a CSV file, containing the information of papers published across various domains:

Authors	Title	Venue	Year
Alan Turing	Computing Machinery and Intelligence	Mind	1950
	• • • •		

Suppose one is interested in finding out the number of publications in an "Operations Research" (OR) venue since 2010. They specify their query in the form of a prompt how many papers were published in an operations research venue since 2010], and pass it alongside the CSV file to an LLM to find the answer.

Motivation

- We study the application of LLMs to symmetric tasks.
- A Symmetric Tasks T is a pair (U, q).
 - ▶ U: A (large) bag of items (a set or a multi-set) $\{e_1, e_2, ..., e_n\}$
 - ightharpoonup A query q about U.
- Example. Graph Degree Task:
 - ▶ *U* is the list of edges in any order.
 - ▶ q is a NL question like [What is the degree of node 10?]

Motivation

- We study the application of LLMs to symmetric tasks.
- A Symmetric Tasks T is a pair (U, q).
 - ▶ U: A (large) bag of items (a set or a multi-set) $\{e_1, e_2, ..., e_n\}$
 - ightharpoonup A query q about U.
- Example. Graph Degree Task:
 - ▶ *U* is the list of edges in any order.
 - ▶ q is a NL question like [What is the degree of node 10?]

Observation:

- The set elements are not ordered, i.e., their order does not matter.
- LLMs process data in an ordered manner.
 - ► LLMs pay more attention to some positions
 - ▶ May ever forget parts of the input, especially in long prompts.
 - ightharpoonup \Rightarrow Forgetting may lead to incorrect responses.

- Motivation
- 2 Problem Formulation
- 3 Solution Overview
- 4 Estimating the Relevance
- 5 Highlighted Experiments

Problem Formulation

LLM Model

- API, Black box, Access.
- Output Error: $\varepsilon_{\mathcal{L}}(U,q) = \Delta[\mathcal{L}(U,q), \mathcal{O}(U,q)].$

Problem Definition

- Given a task (U,q) and a large language model \mathcal{L}
- Rerank the elements in U to minimize the expected error: $\mathbb{E}(\varepsilon_{\mathcal{L}}(U,q))$.

Our approach is task and query agnostic. In other words, we find the reranking function π^* without using any **explicit knowledge** about the query or the task.

- Motivation
- 2 Problem Formulation
- Solution Overview
- 4 Estimating the Relevance
- 5 Highlighted Experiments

Modeling as Utility Maximization

We define the *utility* of a reranking function π to capture the expected error $\mathbb{E}\left[\varepsilon_{\mathcal{L}}(U_{\pi},q)\right]$.

Relevance

- The function $Rel_q: U \to [0,1]$ captures the relevance of each element $e_i \in U$ to the query q.
- $Rel_q(e_i)$ is the relevance of e_i to the query q.

Exposure

• $\mathcal{X}_{\mathcal{L}}(i)$ to show the likelihood that the LLM will not miss an element in position i

Utility of a ranking π of U

$$utility(\pi|q) = \sum_{i=1}^{|U|} \mathcal{X}_{\mathcal{L}}(i) \cdot Rel_q(e_{\pi(i)})$$

Modeling as Utility Maximization – Example

Example 2: Node Degree Computation

- Consider the following graph G, given as a list of edges: $\{e_1, e_2, e_3, e_4\}$.
- Let the exposure function be $\mathcal{X}_{\mathcal{L}}(i) = \frac{1}{i}$
- ullet query q: [compute the degree of v_1]

Example 2 – Max. Utility

- For edges incident to v_1 , $Rel_q(e_i) = 1$; for the others the relevance is 0.
- \Rightarrow the utility of the ranking $\pi = \{e_1, e_2, e_3, e_4\}$ is $utility(\pi|q) = 1 + \frac{1}{3} + \frac{1}{4} \simeq 1.58$.
- Note that the ranking with maximum utility puts e_1 , e_3 , and e_4 at the beginning of the list, and has the utility of $1 + \frac{1}{2} + \frac{1}{3} \simeq 1.83$.

- Motivation
- 2 Problem Formulation
- 3 Solution Overview
- 4 Estimating the Relevance
- 5 Highlighted Experiments

Relevance Estimation

- We utilize helper LLMs for estimating the relevance values.
- Warm-up:
 - ▶ Partition the input U into m equally sized chunks: $[P_1, P_2, \cdots, P_m]$.
 - ▶ For each chunk, ask the helper LLM to find the relevant ones to the query.
 - [Which elements in $[P_i]$ are more relevant for answering the query [q]?]
 - ► Issues?
 - ► Alternative?

Relevance Estimation

- We utilize helper LLMs for estimating the relevance values.
- Warm-up:
 - ▶ Partition the input U into m equally sized chunks: $[P_1, P_2, \cdots, P_m]$.
 - ▶ For each chunk, ask the helper LLM to find the relevant ones to the query.
 - [Which elements in $[P_i]$ are more relevant for answering the query [q]?]

• Modeling as a Bipartite Graph: An approach inspired by the peer review process.

Relevance Estimation – Bipartite Graph

- Randomly shuffle the input list σ times: $U_1, U_2, \cdots, U_{\sigma}$
- Partition each shuffle U_i into m chunks: $\{P_{i,1}, P_{i,2}, \cdots, P_{i,m}\}$
- Evaluation: Ask the helper to give discrete scores to each chunk.
 - ▶ Total of $\sigma \cdot m$ evaluations by helper model: $\{\mathcal{E}_1, \mathcal{E}_2, \cdots, \mathcal{E}_{\sigma m}\}$

Bipartite Graph

Left nodes: Estimated scores

$$\{S_1,\cdots,S_n\}$$

Right nodes: Bias in each evaluation

$$\{\beta_1 \cdots, \beta_{\sigma m}\}$$

Edges: Score assigned to item i in evaluation j:

$$w_{i,j}$$

Relevance Estimation – Bipartite Graph (Cont.)

• Intuition: Each evaluation j, equally under/over estimates all the scores $w_{i,j}$:

$$w_{i,j}^{unbiased} = \frac{w_{i,j}}{\beta_j}$$

• Using the bipartite graph values, the following equations hold:

$$S_{i} = \frac{1}{\sigma} \sum_{(i,j)} \frac{w_{i,j}}{\beta_{j}}$$
$$\beta_{j} = \frac{1}{\lceil \frac{n}{m} \rceil} \sum_{(i,j)} \frac{w_{i,j}}{S_{i}}$$

• S_i and β_j values are unknown.

< □ ト < 圖 ト < 差 ト < 差 ト 差 9 への

Relevance Estimation: Learning the bipartite graph values

- Initialize $\beta_j^{(0)} = 1, \ \forall j \in [\sigma m]$
- 2 Iteratively update the values until convergence

$$\bar{S}_i^{(T)} = \frac{1}{\sigma} \sum_{(u_i, v_j) \in E} \frac{w_{i,j}}{\beta_j^{(T-1)}}, \qquad \forall u_i \in U$$

$$\beta_j^{(T+1)} = \frac{1}{\lceil \frac{n}{m} \rceil} \sum_{(u_i, v_i) \in E} \frac{w_{i,j}}{\bar{S}_i^{(T)}}, \qquad \forall u_i \in U$$

Theorem

The bipartite graph value estimation process would eventually converge.

- Motivation
- 2 Problem Formulation
- Solution Overview
- 4 Estimating the Relevance
- **5** Highlighted Experiments

Highlighted Experiments

Table: Comparing final <u>task error</u>, proximity (<u>absolute value</u>), across methods and helper LLMs. Database query task on IMDB dataset.

Algorithm	DeepSeek	Gemma2	Llama3.1	Mistral	Qwen2
Random (UB)	1.00 (1.18) ↑	1.00 (1.24) ↑	1.00 (1.32) ↑	1.00 (0.90) ↑	1.00 (1.24) ↑
Warm-up Bipartite	0.56 (0.92) 0.03 (0.60) ↓	$0.87 \ (1.12) \uparrow \ 0.29 \ (0.56) \downarrow$	$0.85 \ (1.20) \uparrow \\ 0.04 \ (0.52) \downarrow$	0.49 (0.60) 0.69 (0.72)	0.50 (2.12) 0.48 (2.72)
Optimum (LB)	0.00 (0.58) \	0.00 (0.28) ↓	0.00 (0.48) ↓	0.00 (0.30) ↓	0.00 (0.42) ↓

For a method with error e, the proximity of the error is:

$$0 \le Prox = \frac{e-LB}{UB-LB} \le 1$$

• Error e is the average of $|output - ground_t ruth|$.

4□ > 4□ > 4 = > 4 = > = 900

Highlighted Experiments (Cont.)

Table: Comparing the $\underline{\text{ranking utility}}$ of the final reranking generated by different methods and $\underline{\text{helper LLMs.}}$ IMDB dataset for DB Query task. Higher is better.

Algorithm	DeepSeek	Gemma2	Llama3.1	Mistral	Qwen2
Optimum (UB)	2.76 (100%) ↑	2.60 (100%) ↑	2.69 (100%) ↑	$2.52\ (100\%)\ \uparrow$	2.67 (100%) ↑
Bipartite Warm-up	2.63 (94%) ↑ 1.30 (33%)	2.50 (95%) ↑ 2.58 (99%) ↑	2.48 (90%) ↑ 1.68 (52%)	$2.22 \; (84\%) \uparrow \\ 2.22 \; (84\%) \uparrow$	1.60 (48%) 1.50 (44%)
Random (LB)	0.57 (0%) ↓	0.48 (0%) ↓	0.58 (0%) ↓	0.55 (0%) ↓	0.58 (0%) 👃

Highlighted Experiments – Exposures

Figure: Token exposures and errors² relative to the location in prompt.

Dehghankar & Asudeh (UIC) KDD 2025

²The higher the error, the higher likelihood of being forgotten. 20 / 22

Thank you!

Mohsen Dehghankar mdehgh2@uic.edu

Preprocessing: Exposure Values Discovery

- (Recall) $\mathcal{X}_{\mathcal{L}}(i)$: the likelihood that the model misses a token at position i of the input. (Mohsen: exposure is the reverse of likelihood)
- Learning the exposure values: we consider a sample set of predefined tasks:
 - ightharpoonup A query q
 - ▶ The input elements $U = [t_1, t_2, ..., t_n]$ (consisting of n tokens arranged in sequential order).
 - ▶ The ground-truth relevance value.
- We model the relation between the error and the exposures as,

$$\frac{1}{\mathbb{E}[\epsilon_{\mathcal{L}}(U,q)]} \propto \frac{1}{n} \sum_{i=1}^{n} (\mathcal{X}_{\mathcal{L}}(i) \cdot Rel_q(t_i))$$