
FairHash:
A Fair and Memory/Time-efficient Hashmap

Nima Shahbazi, Stavros Sintos, Abolfazl Asudeh

Department of Computer Science
University of Illinois Chicago

ACM SIGMOD, Santiago Chile
June 2024

Shahbazi et al. (UIC) FairHash SIGMOD’24 1 / 17

Motivation

Little attention to fairness-aware data structures

Hashmaps are the founding block of many applications

Bloom filter, Count sketches, Min-wise hashing, etc.

This paper:

Revisits hashmaps through the lens of group fairness

Shahbazi et al. (UIC) FairHash SIGMOD’24 2 / 17

Review: Traditional Hash Functions

Traditional k-wise independent hashing [Sie89]

Randomly map a key to a random value in a specific output range

Unlikely that independent random value assignment distribute
points uniformly in the buckets

(Related topic: The Occupancy Problem [MR95])

Example

100 iid integers in range [0, 9]

Not uniformly distributed within the buckets

Number of collisions minimized when uniform
distribution is satisfied 0 1 2 3 4 5 6 7 8 9

0

5

10

15

20

Shahbazi et al. (UIC) FairHash SIGMOD’24 3 / 17

Review: Data-informed Hashmaps

Learn a hash function that uniformly distributes the data across
different buckets [KBC+18]1

CDF of data is constructed

Range of values are partitioned into equi-size buckets

Example

Data-informed Hashmap learned over 100
integers in range [0, 9]

Uniformly distributed within the buckets

1We refer to [KBC+18] as CDF-based hashmap.
Shahbazi et al. (UIC) FairHash SIGMOD’24 4 / 17

Motivation at a Glance

Traditional hashmaps Data-informed hashmaps

O
ve
ra
ll
D
is
t.

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

G
ro
u
p
-l
ev
el

D
is
t.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Shahbazi et al. (UIC) FairHash SIGMOD’24 5 / 17

Motivation at a Glance

Traditional hashmaps Data-informed hashmaps (0-unfair) FairHash

O
ve
ra
ll
D
is
t.

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

G
ro
u
p
-l
ev
el

D
is
t.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

Shahbazi et al. (UIC) FairHash SIGMOD’24 6 / 17

Fairness Definitions

Given
1 A set P of n points in Rd

▶ Each point belong to one of the k demographic groups
G = {g1, . . . ,gk}

2 A hashmap H with
▶ m buckets, b1, . . . , bm
▶ a hash function h : Rd → [1,m]

that maps each point p ∈ P to one of the m buckets.

Shahbazi et al. (UIC) FairHash SIGMOD’24 7 / 17

Fairness Definitions

Collision Probability

∀ random pairs p ∈ P, q ∈ P :
▶ Pr[h(p) = h(q)] = 1

m

Single fairness

∀ random points pi ∈ gi:
▶ Pr[h(pi) = h(x)] = . . . = Pr[h(pk) = h(x)] = 1

m

Pairwise fairness

∀ random pairs pi ∈ gi and qi ∈ gi:
▶ Pr[h(pi) = h(qi)] = . . . = Pr[h(pk) = h(qk)] =

1
m

The strongest notion of fairness: if satisfied, the other two are
also satisfied.

Shahbazi et al. (UIC) FairHash SIGMOD’24 8 / 17

(ε, α)-hashmap

ε-unfairness

A hashmap is ε-unfair, if and only if

maxg∈G(Prg)

1/m
≤ (1 + ε) ⇒ max

g∈G
(Prg) ≤

1

m
(1 + ε) (1)

α-mermory

A We say a hashmap with m buckets satisfies α-memory, if and only
if it stores at most α(m− 1) boundary points.

(ε, α)-hashmap

A hashmap that is ε-unfair and satisfies α-memory.

Shahbazi et al. (UIC) FairHash SIGMOD’24 9 / 17

Comparisons

Query Collision Single Pairwise
Hashmap Architecture time probability fairness fairness

traditional data-independent O(1) ✗ ✗ ✗

CDF-based data-dependent O(logm) ✓ ✓ ✗

FairHash data-dependent O(logm) ✓ ✓ ✓

Summary of algorithmic results

Assumptions Performancea

Algorithm No. No. (ε, α)-hashmap Query Pre-processing
Attributes Groups time time

Ranking d ≥ 2 k ≥ 2 (εR, 1) O(logm) O(nd log n)

Sweep&Cut d ≥ 1 k ≥ 2 (0, n
m) O(log n) O(n log n)

Necklace2g d ≥ 1 2 (0, 2) O(logm) O(n log n)

Necklacekg d ≥ 1 k > 2 (0, k(4 + log n)) O(log(km log n)) O(mk3 log n+ knm(n+m))

aThe approximate collision results are provided in the paper [SSA24].

Shahbazi et al. (UIC) FairHash SIGMOD’24 10 / 17

Ranking-based Algorithms (εR, 1)-hashmap

Observation: Only the ordering between the tuples specify the buckets
in the CDF-based hashmap.

Idea:

Combine the attribute of a point p ∈ P into a single score f(p),
using a (ranking) function f : Rd → R
Construct the hashmap on f(p).

Objective: Find the function f , according to which the unfairness
is minimized.

Algorithm Overview. Use computational geometry concepts and Linear
functions f(p) = w⊤p

Consider points as hyperplanes in the dual space

Design a Ray-sweeping algorithm to efficiently find all possible
orderings → return a function that minimizes unfairness.

Shahbazi et al. (UIC) FairHash SIGMOD’24 11 / 17

Cut-based Algorithms

Observation: Buckets do not necessarily need to be continuous!

Idea:

Partition the values into more than m “bins”.

Many-to-one mapping: Several bins are assigned to each bucket.

Theorem

Independent of how the points are distributed and their orders, there
always exists a cut-based hashmap that is 0-unfair.

Shahbazi et al. (UIC) FairHash SIGMOD’24 12 / 17

Cut-based Algorithms: Sweep&Cut (0, n
m)-hashmap

Algorithm Overview. Make two sorted passes over P

1 First pass: (knowing the number of tuples each bucket should
contain from each group) For every tuple record the bucket it
should belong

2 Second pass: add a cut between each pair of points that belong to
different buckets.

Shahbazi et al. (UIC) FairHash SIGMOD’24 13 / 17

Cut-based Algorithms: Necklace2g (0, 2)-hashmap

Necklace Splitting Problem [AG21]

Divide a necklace of T beads of n′ types between k′ agents, such that

1 all agents receive the same amount of beads from each type.

2 the number of splits to the necklace is minimized.

Reduction: points → beads; group → bead type; buckets → agents

Algorithm Overview (2-groups): Iterative Algorithm

Consider sorted P as a circle (pn comes before p1)

Key idea: The circle always has at least one consecutive window of
size n

m that contains |g1|
m points from g1 (and hence |g2|

m points
from g2).

At each iteration, efficiently find such a window; carve it out of the
circle; connect the two ends to form the circle for the next iteration

Shahbazi et al. (UIC) FairHash SIGMOD’24 14 / 17

Highlighted Experiment Results
A
D
U
L
T

1 2 3 4
Dataset size (n) 10 4

0

0.005

0.01

0.015

0.02

1 2 3 4
Dataset size (n) 10 4

10 2

10 3

10 4

N
u

m
b

er
 o

f
cu

ts

200

C
h
ic
a
g
o
P
o
p

0 2 4 6 8
Dataset size (n) 10 5

10 0

10 2

10 4

T
im

e
(s

ec
)

0 2 4 6 8
Dataset size (n) 10 5

0

0.5

1

1.5

2

2.5

T
im

e
(s

ec
)

10 -6

Preprocessing Time Query Time

Shahbazi et al. (UIC) FairHash SIGMOD’24 15 / 17

Thank you!

Figure: Github Repository

Shahbazi et al. (UIC) FairHash SIGMOD’24 16 / 17

References

Noga Alon and Andrei Graur, Efficient splitting of necklaces,
ICALP 2021, 2021.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis
Polyzotis, The case for learned index structures, SIGMOD, 2018,
pp. 489–504.

Rajeev Motwani and Prabhakar Raghavan, Randomized
algorithms, Cambridge university press, 1995.

Alan Siegel, On universal classes of fast high performance hash
functions, their time-space tradeoff, and their applications, FOCS,
1989, pp. 20–25.

Nima Shahbazi, Stavros Sintos, and Abolfazl Asudeh, Fairhash: A
fair and memory/time-efficient hashmap, SIGMOD 2 (2024), no. 3,
1–29.

Shahbazi et al. (UIC) FairHash SIGMOD’24 17 / 17

	Motivation
	Preliminaries
	Summary
	Solutions
	Experiments
	Thank you
	References

