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Motivation

Issue: Bias in, Bias Out!

Biased Data (Historical, Sampling, Representation, etc.)
⇒ Biased LLMs: unfair/discriminatory outcomes

.
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Biased Data (Historical, Sampling, Representation, etc.)
⇒ Biased LLMs: unfair/discriminatory outcomes

Existing Resolutions:

Pre-process interventions: Remove the bias in training/fine-tuning
data [2, ?, 3] (costly)

Post-process interventions: Fairly aggregate outputs [1] (limited to
generated outputs)

Hard Prompting: augmenting prompts with pre-specified phrases
[4] (Prompt unaware)

.
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Issue: Bias in, Bias Out!

Biased Data (Historical, Sampling, Representation, etc.)
⇒ Biased LLMs: unfair/discriminatory outcomes

Existing Resolutions:

Pre-process interventions: Remove the bias in training/fine-tuning
data [2, 3] (costly)

Post-process interventions: Fairly aggregate outputs [1] (limited to
generated outputs)

Hard Prompting: augmenting prompts with pre-specified phrases
[4] (Prompt unaware)

Our idea

Automated Prompt Rewriting
based on the generated output
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Design Goals: Post-process Intervention

1 Model-agnostic: A ready-to-apply wrapper on top of any current
or future open/closed-source LLM

2 Task-agnostic

3 Agnostic to the choice of Embedder

4 No need for pre-training or fine-tuning

5 Not limited to binary-sensitive attributes

6 Distinguishes between bias and (unharmful) group orientation
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A three-step process

1 Bias Identification
▶ an orientation towards a demographic group
▶ unpleasant characteristic

2 Identifying a pleasant resolution

3 Prompt Rewriting
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Preliminaries – Notations

v⃗r: the sentence embedding of an output phrase r
▶ e.g. embedder: instructor

G = {g⃗1, · · · , g⃗k}, for the (demographic) groups {g1, · · · ,gk}
▶ (e.g., {male, female, black, white, etc.})
▶ Sample sentences like ‘‘He is a man’’ to estimate the group

embeddings

A set of Pleasant T+ and Unpleasant T− words for bias
identification and resolution
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Bias Identification

Orientation

Cosine similarity to specify the orientation of an output to a group:
ßr(g⃗k) = cos(v⃗r, g⃗k)

orientation(r) =

{
gk if ßr(g⃗k) ≥ δ

false otherwise

An orientation is harmful only if it is “socially unpleasant”. We use
the set of unpleasant words T− for this purpose.

Unpleasant

Let w− be the most similar word in T− to the response r. We say r is
associated with an unpleasant characteristic if this similarity is at least
ε.

unpleasant(r,gk) =

{
w− if ßr(w⃗−) ≥ ε

false otherwise
,
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Identifying a pleasant resolution

To find a pleasant resolution, a word w⃗+ to mitigate bias within the
model response:

1 find the vector u⃗∗ in a way that ⟨u⃗∗ + v⃗r, w⃗
−⟩ = 0

▶ u⃗∗ is the vector that once added to the response vector, makes it
orthogonal to w⃗−.

2 find the most similar word in T+ to u⃗∗

w⃗+ = argmax
w⃗∈T+

k

cos(w⃗, u⃗∗),
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Prompt Rewriting

Use the LLM to rewrite the prompt using the pleasant resolution
w+ to guide the model to revise and regenerate its previous
response

Repeat the process if needed
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System Architecture

Identifying a 
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orientation
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containing the 

instruction

Output

The CEO went to the tailor
becaus ----- needed a new 
suit.
1)She
2)He
3)They

I choose "He".
The CEO went to the 
tailor
becaus he needed a 
new suit.

The CEO went to the tailor
becaus he needed a new 
suit.

The closest word to the 
repair vector is 
"Equality".

The previously generated 
output appears to exhibit bias 
toward "Manpower" .
Provide an answer that is 
more "Equality" .
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I choose "They".
The CEO went to the 
tailor
becaus they needed a 
new suit.

Identifying 
unpleasant 

characteristic

The CEO went to the tailor
becaus he needed a new suit.

Seems like the word 
"Manpower"
 is causing bias

Finding 
the pleasant 

direction 

w-

v_r

u*
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Highlighted Experiment Results

Portions of the answers with male and female pronouns on WinoBias
dataset

Multi-choice Open-ended

Group Male Female Neutral Male Female Neutral

GPT-3.5 0.359 0.105 0.536 0.283 0.196 0.521
GPT-3.5-Axolotl 0.074 0.101 0.825 0.118 0.109 0.773

llama3-70B 0.438 0.049 0.513 0.317 0.396 0.287
llama3-70B-Axolotl 0.031 0.0680 0.901 0.168 0.184 0.648

llama3-8B 0.258 0.300 0.442 0.327 0.234 0.439
llama3-8B-Axolotl 0.080 0.115 0.805 0.190 0.204 0.606
llama3-8B-Self-Dibias 0.364 0.282 0.354 0.200 0.424 0.370
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Thank you!

InDeX Lab: cs.uic.edu/∼indexlab/
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