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ABSTRACT
Many web databases are “hidden” behind proprietary search inter-
faces that enforce the top-k output constraint, i.e., each query re-
turns at most k of all matching tuples, preferentially selected and
returned according to a proprietary ranking function. In this paper,
we initiate research into the novel problem of skyline discovery
over top-k hidden web databases. Since skyline tuples provide crit-
ical insights into the database and include the top-ranked tuple for
every possible ranking function following the monotonic order of
attribute values, skyline discovery from a hidden web database can
enable a wide variety of innovative third-party applications over
one or multiple web databases. Our research in the paper shows
that the critical factor affecting the cost of skyline discovery is the
type of search interface controls provided by the website. As such,
we develop efficient algorithms for three most popular types, i.e.,
one-ended range, free range and point predicates, and then com-
bine them to support web databases that feature a mixture of these
types. Rigorous theoretical analysis and extensive real-world on-
line and offline experiments demonstrate the effectiveness of our
proposed techniques and their superiority over baseline solutions.

1. INTRODUCTION
Problem Motivation: Skyline for structured databases has been
extensively studied in recent years. Consider a database with n
tuples over m numerical/ordinal attributes, each featuring a do-
main that has a preferential order for certain applications, e.g., price
(smaller the better), model year (newer the better), etc. A tuple t
is said to dominate a tuple u if for every attribute Ai, the value of
t[Ai] is preferred over u[Ai]. The skyline is the set of all tuples ti
such that ti is not dominated by any other tuple in the database.

Skyline is important for multi-criteria decision making, and is
further related to well-known problems such as convex hulls, top-k
queries and nearest neighbor search. For example, a precomputed
skyline can serve as an index for efficiently answering any top-1
query with a monotonic ranking function over attributes. The ex-
tension of a skyline to aK-sky band (containing all tuples not dom-
inated by more than K − 1 others) enables efficient answering of
top-k queries when k ≤ K. For a summary of research on skyline
computation and their applications, please refer to Section 9.

Much of the prior work assumes a traditional database with full
SQL support [4, 6, 13, 23] or databases that expose a ranked list of
all tuples according to a pre-known ranking function [3,17]. In this
paper, we consider a novel problem of how to compute the skyline
over a deep web, “hidden”, database that only exposes a top-k
query interface. Unlike the traditional assumptions, real-world web
databases place severe limits on how external users can perform
searches. Typically, a user can only specify conjunctive queries
with range or (single-valued) point conditions, depending on which
one(s) the web interface supports, and receive at most k matching
tuples, selected and sorted according to a ranking function that is
often proprietary and unknown to the external user.

Discovering skyline tuples from a hidden web database enables a
wide variety of third-party applications, ranging from understand-
ing the “performance envelope” of tuples in the database to en-
abling uniform ranking functions over multiple web databases. For
example, consider the construction of a diamond search service
that taps into web databases of several jewelry stores such as Blue
Nile (by collecting data through their web search interfaces). While
there are well-known preferential orders on all critical attributes of
a diamond such as clarity, carat, color, cut and price, each jewelry
store may design its own ranking function as a unique weighting
of these attributes. On the other hand, the third-party service needs
to rank all tuples from all stores consistently, and ideally support
user-specified ranking functions (e.g., different weightings of the
attributes) according to his/her own need. An efficient and effec-
tive way to enable this is to first discover the skyline tuples from
the hidden web database of each jewelry store, and then apply a
user-specified ranking function on all the retrieved data to obtain
tuples most preferred by the user. One can see that, similarly, this
approach can be used to enable third-party services such as flight
search with user-defined ranking functions on price, duration, num-
ber of stops, etc.

Challenges: The technical challenges we face are fundamentally
different from traditional skyline computation techniques, mainly
because the data access model is completely different. In traditional
skyline research, there is no top-k constraint on data access, so the
algorithms can take advantage of either full SQL power or certain
pre-existing data indices such as sequence access according to a
known ranking function [3, 17]. On the other hand, as mentioned
earlier, in hidden databases the data access is severely restricted. In
principle, one can apply prior techniques developed to crawl the en-
tire hidden database (e.g., using algorithms such as [22]), and then
compute the skyline over a local copy of the database. However,
as we shall show in the experimental results, such an approach is
often impractical as crawling the entire database (as opposed to just
the skyline) requires an inordinate number of search queries (i.e.,
web accesses). Note that many real-world web databases limit the
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number of web accesses one can issue through per-IP-address or
per-API-key limits. In many cases, this limit is too small to sustain
the execution of a complete crawl. Thus, it is necessary to develop
skyline discovery algorithms that execute as few search queries via
the restrictive web interface as possible.

Technical Highlights: We distinguish between several important
categories of web search interfaces: whether range predicates are
supported for the attributes (either one-ended, e.g. Price < 300,
or two-ended, e.g., 200 < Price ≤ 300), or only single-value/point
predicates (e.g., Number of Stops = 0) are allowed. We also con-
sider hidden databases where a mix of range and point attributes
exist. Computing skylines over each type of interface offers its
own unique challenges.

For the case of one-ended range queries, we develop SQ-DB-
SKY, an iterative divide-and-conquer skyline discovery algorithm
that starts by issuing broad queries (i.e., queries with few predi-
cates), determines which queries to issue next based on the tuples
received so far, and then gradually narrows them to more specific
ones. For the case of two-ended range queries, we develop algo-
rithm RQ-DB-SKY, which is similar to the previous algorithm,
except that instead of being forced to issue overlapping queries, the
algorithm is able to take advantage of the more powerful search
interface and issue mutually exclusive queries to cover the search
space and be able to terminate earlier.

In the worst case, the maximum number of queries issued by
SQ-DB-SKY may be O(m · |S|m+1) where m is the number of
attributes and |S| is the size of the skyline set. Note that this run-
ning time is independent1 of the database size n. In contrast, the
worst case query cost for RQ-DB-SKY isO(m ·min(|S|m+1, n)).
More interestingly, while the worst case behavior appears to grow
fast with |S| when m is large, we show through theoretical anal-
ysis and real-world experiments that this is the artifact of some
extremely-ill-behaving ranking function (which has to be consid-
ered in worst-case analysis). In practice, the algorithms perform
extremely well.

As additional highlights of our contributions, we provide an in-
teresting theoretical result on the average-case behavior of the above
algorithms by proving that, for any arbitrary database, the ex-
pected query cost taken over the randomness of the ranking func-
tion is always bounded from above by (e + e · |S|/m)m. Note
that the growth speed of this bound with |S| is orders of magnitude
slower than that of the worst-case bound. Furthermore, we also
show why the real-world performance of SQ- and RQ-DB-SKY is
likely even better than the average-case performance for any “rea-
sonable” ranking function used by the hidden database.

For the case of point queries, the significantly weaker search in-
terface introduces novel challenges in designing an efficient skyline
discovery algorithm. For the special case of 2-dimensional data, we
design algorithm PQ-2D-SKY that is instance-optimal, although
the worst-case complexity is a complex function that depends not
only on parameters such as n and S, but also on the domain sizes
of the attributes. Unfortunately, the generalization to higher dimen-
sions proves much more complicated, as shown by a negative result
that no instance-optimal algorithm can exist for higher dimensions.

As such, our eventual algorithm for higher dimensions, PQ-DB-
SKY, uses as a subroutine a revised version of the 2D algorithm
that is able to discover all skyline from a “pruned”’ 2D subspace
in an instance-optimal manner (though the overall algorithm for
higher dimensions is not instance-optimal). Given the exponential
nature of dividing a higher-dimensional space into 2D subspaces,
the worst-case query cost of the algorithm can be quite large. How-

1at least conditionally given m and |S|

ever, as we shall show through real-world online experiments, the
nature of these PQ attributes used in real-world hidden databases
(e.g., they usually have small domains with all domain values occu-
pied by real tuples) makes the actual performance of PQ-DB-SKY
often fairly efficient in practice.

When the hidden database features a mixture of range and point
attributes, we show that the straightforward idea of only applying
RQ-DB-SKY directly over the range-predicate attributes and not
using the point-predicate attributes at all does not work because
some skyline tuples may be missed. These remaining tuples need to
be identified by a modified version of PQ-DB-SKY. These ideas are
combined into our eventual algorithm MQ-DB-SKY that can dis-
cover the skyline of a database containing a mixture of one-ended,
two-ended, and/or point attributes.

The above algorithms are all about computing the skyline of a
hidden database. We have also extended these algorithms to com-
pute the top-K sky band of the database. We conducted compre-
hensive experiments over multiple real-world datasets to demon-
strate the effectiveness of these algorithms and their superiority
over the baseline, crawling-based, solution. In addition, we also
tested our algorithms live online over multiple real-world web databases
such as Yahoo! Autos, Google Flights, and Blue Nile (an online di-
amond retailer). For all these real-world databases tested, our algo-
rithms can discover all skyline tuples in a highly efficient manner.

Summary of Contributions:
• We introduce the novel problems of computing the skyline/band

of hidden web databases with top-k constraints, motivate them
with third-party applications,and show why traditional skyline
computation approaches are inappropriate for these problems.
• We distinguish between different search interfaces that hidden

databases typically provide: one-ended and two-ended ranges
and point predicates, and show that each brings different chal-
lenges in designing algorithms for skyline discovery.
• For the case of one-ended (resp. two-ended) range predicates,

we develop SQ-DB-SKY (resp. RQ-DB-SKY). For the case of
point predicates, we develop PQ-2D-SKY for two-dimensional
data, and a more general PQ-DB-SKY for higher-dimensional
data. For databases with a mixture of range and point predicates,
we develop MQ-DB-SKY.
• We provide rigorous theoretical analysis including worst/average-

case analysis and instance-optimality in certain cases. We also
conducted comprehensive experiments over real datasets and live
web databases to demonstrate the effectiveness of our algorithms.

2. PRELIMINARIES

2.1 Model of Hidden Database
Database: Consider a hidden web database D with n tuples over
m attributes A1, . . . , Am. Let the domain of Ai be Dom(Ai) and
the value of Ai for tuple t be t[Ai] ∈ Dom(Ai) ∪ {NULL}.
Skyline: The m attributes of a web database can be divided into
two categories: ranking attributes with an inherent preferential or-
der (either numeric or ordinal); and filtering attributes whose val-
ues are not ordered. The skyline definition only concerns the rank-
ing attributes. For a ranking attribute Ai, we denote the total order
by <, i.e., vi ranks higher than vj if vi < vj . With this notation,
a tuple t ∈ D is a skyline tuple if and only if there does not exist
any other tuple t′ ∈ D with t′ 6= t such that t′ dominates t, i.e.
t′[Ai] ≤ t[Ai] for each and every ranking attribute Ai. In other
words, no other tuple t′ in the database outranks t on every ranking
attribute.
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Note that the skyline definition can be easily extended to sky
band - i.e., a tuple is in the K-skyband if and only if it is not dom-
inated by more than K − 1 tuples. One can see that the skyline
is indeed a special case of (top-1) sky band. In most parts of the
paper, we focus on the problem of skyline discovery. The extension
to discovering the K-skyband (K > 1) is discussed in Section 7.
Query Interface: The web interface of a hidden database takes as
input a user-specified query (supported by the interface) and pro-
duces as output at most k tuples matching the query. At the in-
put side, the interface generally supports conjunctive queries on
one or more attributes. The predicate supported for each attribute,
however, is a subtle issue that depends on the type of the attribute
and the interface design. While filtering attributes with categorical
values generally support equality (=) only, a ranking attribute may
support any subset of <, =, >, ≤, and ≥ predicates. Since the
supported predicate types turn out to be critical for our algorithm
design, we leave it for detailed discussions in the next subsection.

Output-wise, the query answer is subject to the top-k constraint,
i.e., when more than k tuples match the input query, instead of re-
turning all matching tuples, the hidden database preferentially se-
lects k of them according to a ranking function and returns only
these top-k tuples through the interface. In this case, we say that
query q overflows and triggers the top-k limitation.

The design of this ranking function has been extensively studied
in the database literature, leading to numerous variations. In this
paper, we support a very broad set of ranking functions with only
one requirement: domination-consistent, i.e., if a tuple t dominates
t′ and both match a query q, then t should be ranked higher than t′

in the answer. All results in the paper hold on any arbitrary ranking
function so long as it satisfies this requirement.
Filtering Attributes: While a web database may contain order-less
filtering attributes, they have no bearing on the definition of skyline
tuples. We further note that filtering attributes have no implication
on skyline discovery unless there are skyline tuples with the exact
same value combination on all ranking attributes. Even in this case,
what one needs to do is to simply issue, for each discovered skyline
tuple, a conjunctive query with equality conditions on all ranking
attributes. If the query overflows, one can then crawl all tuples
matching the query using the techniques in [22] .

Since such a case (i.e., multiple skyline tuples having the ex-
act same value combination on all ranking attributes) is unlikely
to happen when we have a meaningful skyline definition, in most
parts of the paper we make the general positioning assumption, i.e.,
all skyline tuples have unique value combinations on ranking at-
tributes, as assumed in most prior work [4, 6, 13, 23]. Our exper-
iments in § 8, however, do involve filtering attributes and confirm
that they have no implication on skyline discovery.

Finally, for the purpose of this paper, we consider the problem
of discovering skyline tuples over the entire database. If the goal
is to discover skyline tuples for a subset of the database subject
to certain filtering conditions, all results in the paper still readily
apply. The only change required is to simply append the filtering
conditions as conjunctive predicates to all queries issued.

2.2 Taxonomy of Attribute Search Interface
We now discuss in detail what types of predicates may be sup-

ported for an attribute - an issue that, somewhat surprisingly, turns
out crucial for the efficiency of skyline discovery. Specifically, we
partition the support into three categories depending on two factors:
(1) whether range predicates are supported for the attribute, or only
equality (i.e., point) predicates are allowed, and (2) when range
predicates are supported, whether the range is one-ended (i.e., “bet-
ter than” a user-specified value), or two-ended.

• SQ, i.e., Single-ended range Query predicate, means that pred-
icate on Ai can be Ai < v, Ai ≤ v or Ai = v, where v ∈
Dom(Ai). Note that we do not further distinguish whether <
or ≤ (or both) is supported, because they are easily reducible to
each other - e.g., one can combine the answers to Ai < v and
Ai = v to produce that forAi ≤ v. On the other hand, ifAi ≤ v
is supported but not Ai < v, one can take the next smaller value
(than v) in Dom(Ai), say v′, and then query Ai ≤ v′ instead2.
• RQ, i.e., Range Query predicate, means that predicate onAi can

be Ai < (or ≤) v, Ai = v or Ai > (or ≥) v.
• PQ, i.e., Point Query predicate, means that predicate on Ai can

only be of the form Ai = v.
Having defined the three types of predicates, SQ, RQ and PQ,

we now discuss the comparisons between them, starting with SQ
vs RQ within range predicates, and then range vs point predicates.
SQ vs RQ: One might wonder why both single-ended SQ and two-
ended RQ exist in a web interface. To understand why, consider
two examples: the memory size and price of a laptop, respectively.
Both have an inherent order: the larger the memory size or the
lower the price, the better. Nonetheless, their presentations in the
search interface are often different:

Memory size is often presented as SQ, because there is little mo-
tivation for a user to specify an upper bound on the memory size.
Price, on the other hand, is quite different. Specifically, it is usually
set as an RQ attribute with two-ended range support because, even
though almost all users prefer a lower price (for the same prod-
uct), many users indeed specify both ends of a price range to filter
the search results to the items they desire. The underlying reason
here is that price is often correlated (or perceived to be correlated)
with the quality or performance of a laptop. For the lack of under-
standing of the more “technical” attributes, or for the simplicity of
considering only one factor, many users set a lower bound on price
to filter out low-performance laptops that do not meet their needs.
SQ/RQ vs PQ: Note that range-predicate support (SQ or RQ) is
strictly “stronger” than PQ: While it is easy to specify a range pred-
icate that is equivalent to a point one, to “simulate” a range query,
one might have to issue numerous point queries, especially when
the domain sizes and the number of attributes are large.

Fortunately though, real-world hidden databases often only rep-
resent an ordinal ranking attribute as PQ when it has (or is dis-
cretized to) a very small domain size. For example, flight search
websites set the number of stops as PQ because it usually takes
only 3 values: 0, 1, or 2+. On the other hand, price is rarely PQ
given the wide range of values it can take. As we shall elaborate
later, the small domain sizes of PQ attributes help with keeping the
query cost small, even though PQ still generally requires a much
higher query cost for skyline discovery than SQ/RQ.

2.3 Problem Definition
Performance Measure: In most parts of the paper, we consider
the objective of discovering all skyline tuples from the hidden web
database. Interestingly, our solutions also feature the anytime prop-
erty [1] which enables them to quickly discover a large portion of
the skyline.

When our goal is complete skyline discovery, what we need to
optimize is a single target: efficiency. We note the most important

2Of course, in the case where Dom(Ai) is an infinite set, e.g.,
when Ai is continuous, a tacit assumption here is that we know a
small value ε such that no tuple can have Ai ∈ (v − ε, v). Given
that the values represented in a database are anyway discrete in
nature, this assumption can be easily satisfied by assuming a fixed
precision level for the skyline definition.
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efficiency measure here is not the computational time, but the num-
ber of queries we must issue to the underlying web database. The
rationale here is the query rate limitation enforced by almost all
web databases - in terms of the number of queries allowed from an
IP address or a user account per day. For example, Google Flight
Search API allows only 50 free queries per user per day.

SKYLINE DISCOVERY PROBLEM: Given a hidden database
D with query interface supporting a mixture of SQ, RQ or
PQ for ranking attributes, without knowledge of the ranking
function (except that it is domination-consistent as defined
above), retrieve all skyline tuples while minimizing the num-
ber of queries issued through the interface.

3. SKYLINE DISCOVERY FOR SQ-DB
We start by considering the problem of skyline discovery for in-

terfaces that support single-ended range queries. Recall from Sec-
tion 2 that a single-ended range supports < (along with = and ≤)
only, but not >. In this section, we first prove the problem of sky-
line discovery single-ended range queries is exponential, then de-
velop the main ideas behind our SQ-DB-SKY algorithm, and dis-
cuss its query cost analysis.

THEOREM 1. Considering the SQ interface, there exists a data-
base D such that discovering its skyline requires at least O(|S|m)
queries.

PROOF. We construct the proof for the case where |S| is larger
than m. Let the domain of each attribute Ai (i ∈ [1,m]) be [0, h+
1], with smaller values preferred over larger ones. We first insert
into the database D the following m tuples t01, . . . , t0m, such that

t0i [Aj ] =

{
0, if i 6= j,

h+ 1, if i = j.
(1)

There are two key observations here. First is that, knowing the
insertion of these m tuples, any optimal skyline discovery algo-
rithm for SQ-DB must issue solely fully-specified queries (i.e., those
with one conjunctive predicate on each attribute Ai). The reason is
that any query with fewer than m predicates will always return one
of t01, . . . , t0m, rendering the query answer useless.

Second is that the insertion of these tuples do not affect the sky-
line nature of any skyline tuples in D, so long as we keep the do-
main of Ai for any tuple in D within [1, h]. The reason is that any
tuple with attribute values solely in [1, h] cannot be dominated by a
tuple in t01, . . . , t0m, which always has one attribute equal to h+ 1.

Having established the fact that the query sequence issued for
skyline discovery consists solely of fully-specified SQ queries, we
can safely represent each query by a point in the m-dimensional
space, specifically the lowest-ranked point covered by the query.
For example, given an SQ query

q: SELECT * FROM D WHERE A1 < v1 AND · · · AND
Am < vm,

we can represent q as the point v(q) : 〈v1, . . . , vm〉. We are now
ready to introduce the following key proposition:

Proposition: If a point v (v 6∈ D) satisfies two conditions: (1) v
is a skyline tuple over D ∪ {v}, and (2) any tuple dominated by v
must also be dominated by at least one tuple in D, then any skyline
discovery algorithm over D must issue the query corresponding to
v.

The proof to the proposition is simple. Since, as proved above,
skyline discovery algorithms can only issue fully specified queries,
the only such queries that return v are corresponding to points that

are equal to or dominated by v. Since any point v′ dominated by
v is also dominated by a tuple in D, it means that issuing v′ may
reveal the tuple in D instead of v. In other words, without issuing
v, there is no way for a skyline discovery algorithm to distinguish
between D and D ∪ {v}, meaning that the algorithm cannot safely
conclude that it has crawled all skyline tuples over D. Thus, any
skyline discovery algorithm over D must issue the query corre-
sponding to v.

Given the proposition, one can see that the lower bound proof is
essentially reduced to a count of points that satisfy the two condi-
tions in the proposition. Consider a database with |S| skyline tu-
ples t1, . . . , t|S|, each having a unique permutation of 1, 2, . . . ,m
as the values for A1, . . . , Am, respectively. To better illustrate the
proof, we add a unique, arbitrarily small, noise εij to the value of
Aj for skyline tuple ti (i ∈ [1, |S|], j ∈ [1,m]), such that εij is
unique for each combination of i and j.

We now show that every unique combination of m − 1 tuples
in t1, . . . , t|S| yields a unique point v that satisfies the two above-
described conditions. Without loss of generality, consider m − 1
tuples t1, . . . , tm−1. Consider the following construction:

We start withA1 and assign v[A1] = max(t1[A1], . . . , tm−1[A1]).
Again without loss of generality, let t1 be the tuple featuring this
“worst” value on A1. Next, we exclude t1 from consideration and
find the worst value onA2, i.e., v[A2] = max(t2[A2], . . . , tm−1[A2]),
and continue this process. One can see that by the time we reach
Am−1, there is only one tuple left, say tm−1, and we assign v[Am−1] =
tm−1.

To determine the value for v[Am], we issue the following query

q: SELECT MIN(Am) FROM D WHERE A1 ≤ v[A1] AND · · ·
AND Am−1 ≤ v[Am−1],

and assign to v[Am] the result minus an arbitrarily small noise, i.e.,
v[Am] = q−εwhere ε is arbitrarily close to 0. Note that this query
will never return empty because the above construction guarantees
that Am−1 satisfies the selection conditions in the query.

There are two key observations from this construction. First,
this constructed v is guaranteed to satisfy both conditions described
above. The proof is straightforward, given that v[Am] is equal to
(sans an arbitrarily small noise) the MIN(Am) among all tuples
dominating v on the other m− 1 attributes.

Second, each different combination ofm−1 tuples in t1, . . . , t|S|
yields a different point v. The reason for this is also simple: each
of the firstm−1 attributes of v comes from a different tuple. Since
each attribute of each tuple features a unique value (thanks to the
inserted noise εij), each unique combination ofm−1 tuples yields
a unique v.

One can see that, given these two observations, there are at least(
|S|
m

)
points v that satisfy both of the above conditions. Thus, the

query cost for a skyline discovery algorithm is O(|S|m).

3.1 Key Idea: Algorithm SQ-DB-SKY
Our SQ-DB-SKY algorithm is an iterative divide-and-conquer

one that starts by issuing broad queries, determines which queries
to issue next based on the tuples received so far, and then gradually
narrowing them to more specific ones. For the ease of understand-
ing, consider the example of a 3-dimensional database. Suppose
the tuple returned by q1 : SELECT * FROM D is t1. Algorithm
SQ-DB-SKY first issues the following three queries:
q2: SELECT * FROM D WHERE A1 < t1[A1]
q3: SELECT * FROM D WHERE A2 < t1[A2]
q4: SELECT * FROM D WHERE A3 < t1[A3]
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A key observation here is that the comprehensiveness of skyline
discovery is maintained when we divide the problem to the sub-
spaces defined by q2, q3, q4. Specifically, every skyline tuple (be-
sides t1) must satisfy at least one of q2, q3, q4 because otherwise
it would be dominated by t1. Now suppose q2 returns t2 as top-1
(which must be on the skyline because no tuple with Ai ≥ v can
dominate one with Ai < v). We continue with further “dividing”
(the subspace defined by) q2 into three queries according to t2:
q5: WHERE A1 < t2[A1]
q6: WHERE A1 < t1[A1] AND A2 < t2[A2]
q7: WHERE A1 < t1[A1] AND A3 < t2[A3]

Again, any skyline tuple that satisfies q2 (i.e., with A1 < t1[A1])
must match at least one of the three queries. One can see that this
process can be repeated recursively from here: Every time a query
qj returns a tuple t, we generate m queries by appending A1 <
t[A1], . . . , Am < t[Am] to qj , respectively. A critical observation
here is that any skyline tuple matching qj must match at least one
of the m generated queries, because it has to surpass t on at least
one attribute in order to be on the skyline. As such, so long as we
follow the process to traverse a “query tree” as shown in Figure 1,
we are guaranteed to discover all skyline tuples.

THEOREM 2. Algorithm SQ-DB-SKY is guaranteed to discover
all skyline tuples.

PROOF. Consider any skyline tuple t. To prove that t will al-
ways be discovered by SQ-DB-SKY, we construct the proof by con-
tradiction. Suppose that t is not discovered, i.e., it is not returned
by any node in the tree. We start by considering the m branches
of the root node. Since t is a skyline tuple, it must satisfy at least
one of these branches, as otherwise it would be dominated by the
tuple returned by the root node (contradicting the assumption that
t is a skyline tuple). When there are multiple branches matching t,
choose one branch arbitrarily. Consider the node corresponding to
the branch, say qi : Ai < t1[Ai]. Since qi matches t yet does not
return it (because otherwise t would have been discovered), it must
overflow and therefore have m branches of its own.

Once again, t has to satisfy at least one of these m branches (of
qi), as otherwise twould have been dominated by the tuple returned
by qi (contradicting the skyline assumption). Repeat this process
recursively; and one can see that there must exist a path from the
root to a leaf node in the tree, such that t satisfies each and every
node on the path. Since every leaf node of the tree is a valid or
underflowing query, this means that the leaf node must return t,
contradicting the assumption that t is not discovered. This proves
the completeness of skyline discovery by SQ-DB-SKY.

In order to better understand the correctness of the algorithm, con-
sider the dummy example provided in Figure 2, and its correspond-
ing SQ-DB-SKY tree in Figure 3. One can see that each skyline
tuple appears in at least one of the branches, as otherwise it would
have been dominated by another (skyline) tuple.

Algorithm 1 depicts the pseudo code for SQ-DB-SKY. Note from
the algorithm that a larger k (as in top-k returned by the database)
reduces query cost for two reasons: First, every returned tuple that
is not dominated by another in the top-k is guaranteed to be a sky-
line tuple. Second, a larger k also makes the tree shallower be-
cause a node becomes leaf if it returns fewer than k tuples. This
phenomenon is verified in our experimental studies.

We would like to clarify that, it is not needed to find the largest
domain value of Ai smaller than v. Instead, so long as we find
v′ < v such that replacing the predicate Ai ≤ v with Ai ≤ v′ still
leads to an non-empty query answer, the algorithms will work. The
only case where we may have trouble with a ≤ interface is when

Figure 1: Tree illustration

A1A2A3

t1 5 1 9
t2 4 4 8
t3 1 3 7
t4 3 2 3

Figure 2: Illustration of example

Ai ≤ v overflows, yet it takes a larger number of queries to perform
binary search to find v′ < v with nonempty Ai ≤ v′. This means
that there is a tuple with value v − ε on Ai, with ε extremely close
to 0. While it is true that this situation may lead to a high query
cost for our algorithm, we have not seen this behavior in any real-
world database for the simple reason that it will make it extremely
difficult for a normal user of the hidden database to specify a query
that unveils the tuple with Ai = v − ε.
Algorithm 1 SQ-DB-SKY

1: QueryQ = {SELECT * FROM D}; S = {}
2: while QueryQ is not empty
3: q = QueryQ.deque(); T = Top-k(q)
4: if T is not empty
5: Append the none-dominated tuples in T to S
6: if T contains k tuples
7: Construct m queries q1, . . . , qm where query qi appends

8: predicate “Ai < T0[Ai]” to q
9: Append q1, . . . qm to QueryQ

3.2 Query-Cost Analysis
Algorithm SQ-DB-SKY has one nice property and one problem

in terms of query cost: The nice property is that the top-1 tuple
returned by every node (i.e., query) must be on the skyline (because
it cannot be dominated by a tuple not matching the query). The

Figure 3: SQ-DB-SKY example tree
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problem, however, is that a skyline tuple t might be returned as
No. 1 by multiple nodes, potentially leading to a large tree size and
thus a high query cost. For example, if t has t[A1] < t1[A1] and
t[A2] < t2[A2], then it might be returned by both q2 and q3.
Worst-Case Analysis: Given the overlap between tuples returned
by different nodes, the key for analyzing the query cost of SQ-DB-
SKY is to count how many nodes in the tree return a tuple. Because
we are analyzing the worst-case scenario, we have to consider k =
1 and any arbitrary, ill-behaved, system ranking functions. In other
words, so long as a tuple matches a node, it may be returned by it.
To this end, there is almost no limit on how many times a tuple can
be returned, except the following prefix-free rule:

Note that each node in the tree can be (uniquely) represented by
a sequence of 2-tuples 〈ti, Aj〉, where ti is a skyline tuple returned
by a node, and Aj is an attribute corresponding to the branch taken
from the node. For example, the nodes corresponding to q2 and
q5 are represented as 〈t1, A1〉 and 〈t1, A1〉, 〈t2, A1〉, respectively.
The one property that all nodes returning the same tuple t must
satisfy is that the sequence representing one node, say q, cannot be
a prefix of the sequence representing another, say q′. The reason
is simple: if the sequence of q is a prefix of q′, then q′ must be in
the subtree of q. However, according to the design of SQ-DB-SKY,
since q returns t, none of the nodes in the subtree of q matches t.
This contradicts the assumption that both q and q′ return t.

Given the prefix-free rule, a crude upper bound for the number
of nodes returning a tuple is w ≤ |S|m, where |S| is the num-
ber of skyline tuples. This is because a query can have at most
m predicates, each with a different attribute and a value (i.e., v
as in Ai < v) equal to that of one of the skyline tuples (i.e.,
v = t[Ai] where t is a skyline tuple). Since no query of concern
can be the prefix of another, the maximum number of such queries
is O(|S|m). Given this bound, the maximum number of nodes in
the tree is O(|S| · (|S|m) · (m+ 1)) = O(m · |S|m+1).

One can make two observations from this worst-case bound:
First, the query cost of SQ-DB-SKY depends on the number of
skyline tuples, not the total number of tuples. This is good news
because, as prior research on skyline sizes [5] shows, the num-
ber of skyline tuples is likely orders of magnitude smaller than the
number of tuples. Another observation, however, is seemingly bad
news: the worst-case cost grows exponentially with the number of
attributes m. Fortunately, this is mostly the artifact of an arbitrary
system ranking function we must assume in the worst-case analy-
sis, rather than an indication of what happens in practice. To under-
stand why, consider what really happens when the worst-case result
strikes, i.e., a tuple t is returned by queries with Ω(m) predicates.

Consider a Level-m node returning t. Let its 2-tuple sequence
be 〈t1, A1〉, . . ., 〈tm, Am〉. What this means is not only that t out-
performs ti on Ai for all i ∈ [1,m], but also that tm does the same
(i.e., outperforms ti on Ai) for all i ∈ [1,m − 1], tm−1 for all
i ∈ [1,m − 2], etc. In other words, this tuple t is likely ranked
highly on many attributes - yet its overall rank is too low to be re-
turned by any of them predecessor queries. While this could occur
for an ill-behaved system ranking function, it is difficult to imag-
ine a reasonable ranking function doing the same. As we show as
follows, so long as we assume a “reasonable” ranking function, the
worst-case query cost can indeed be reduced by orders of magni-
tude, no matter what the underlying data distribution is.
Average-Case Analysis: By “average-case” analysis, we mean an
analysis done based on a single assumption: the system ranking
function is random among skyline tuples - i.e., for any query q, the
ranking function returns a tuple chosen uniformly at random from
S(q), i.e., the set of skyline tuples matching q. One can see that this
represents the “average” case as a randomly chosen skyline tuple

from S(q) can be considered an average of the top-1 selections of
all legitimate ranking functions given q and the database D. As
we shall discuss after this analysis, this is likely still “worse” than
what happens in practice. Yet even this conservation assumption is
enough to significantly reduce the worst-case query cost.

The most important observation for our average-case analysis
can be stated as follows: The expected query cost (taken over the
aforementioned randomness of the system ranking function) of SQ-
DB-SKY is a deterministic function of the number of skyline points
|S|, regardless of how the tuple are actually distributed.

To understand why, we start from the simplest case of |S| = 1.
In this case, the SELECT * query returns the single skyline tuple,
while the m branches of it all return empty, finishing the algorithm
execution. In other words, the query cost is always C1 = m + 1
(where the subscript 1 stands for |S| = 1). Now consider |S| = 2.
Here, depending on which tuple is returned by SELECT *, some
of its m branches may be empty; while some others may return the
other skyline tuple. Let m0 be the number of empty branches. For
the (m−m0) non-empty branches, we essentially need C1 queries
to examine each and its m sub-branches (all of which will return
empty). One can see that the overall query cost will be

C2 = 1 +m0 + (m−m0) · C1. (2)

Interestingly, regardless of how tuples are distributed, the above-
described random ranking always yields E(m0) = m/2 and thus

E(C2) = 1 +m/2 + C1 ·m/2, (3)

where the expected value E(·) is taken over the randomness of the
ranking function. To see why, note thatm0 is indeed the number of
attributes on which the tuple returned by SELECT * outperforms
the other tuple in the database. Since the ranking function chooses
the returned tuple uniformly at random, the expected value of m0

is always m/2 regardless of what the actual values are.
Similarly when |S| > 2, Cs = 1 + m0 + m1 · C1 + . . . +

ms−1 · Cs−1, where mi is the number of attributes on which i
skyline tuples outrank the tuple returned by SELECT * (t0). Since
the probability that t0 is outranked by i skyline tuples on a given
attribute is 1/s, the expected number of such attributes is m/s.
Consequently, the expected query cost of SQ-DB-SKY is

E(Cs) = 1 +
m

s
·
s−1∑
i=0

E(Ci) (4)

where C0 = 1. With Z-transform and differential equations,

E(Cs) =
m((m+ s− 1)!− (m− 1)!s!)

(m− 1)(m− 1)!s!
. (5)

For example, when m = 2, we have E(Cs) = 2s.
We now show why this average-case query cost is orders of mag-

nitude smaller than the worst-case result. First, since E(Ci) ≥
m+ 1 for all i ≥ 1, we can derive from (4) that

E(Cs) ≤ m+ 1

m
· m
s
·
s−1∑
i=0

E(Ci) =
m+ 1

s
·
s−1∑
i=0

E(Ci) (6)

Clearly, if we set Fi such that F0 = 1 and Fs = ((m + 1)/s) ·∑s−1
i=0 Fi, then we have E(Ci) ≤ Fi for all i ≥ 0. Consider

the ratio between Fs and Fs−1 when s � m. Note that Fs−1 =
(m+ 1)/(s− 1) ·

∑s−2
i=1 Fi - i.e.,

s−1∑
i=1

Fi =
s+m

m+ 1
· Fs−1. (7)
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(b) m=8

Figure 4: Comparing worst and average cost of SQ-DB-SKY

In other words,

E(Cs) ≤ Fs =
m+ 1

s
· s+m

m+ 1
· Fs−1 =

s+m

s
Fs−1 (8)

=
(s+m)!

s! ·m!
=
(s+m

m

)
(9)

≤
(

(s+m) · e
m

)m

=
(
e+

e · s
m

)m
(10)

One can see that the growth rate of Fs (with |S|) is much slower
than what is indicated by the worst-case analysis - specifically, the
base of exponentiation is approximately (e/m) · |S| instead of |S|.
Figure 4 confirms this finding by showing the average and worst-
case cost of SQ-DB-SKY for the cases where m = 4 and m = 8.
One can observe from the figures the significantly smaller query
cost indicated by the average-case analysis.

Before concluding the average case analysis, we would like to
point out that even this analysis is likely an overly conservative
one. To understand why, note from (2) that the smaller m0 is, i.e.,
the more branches return empty, the smaller the query cost will
be. In the average-case analysis, since we assume a random order
of skyline tuples, E(m0) = m/|S|, i.e., the top-ranked tuple re-
turned by SELECT * features the top-ranked value on an average of
m/|S| attributes. Clearly, with a real-world ranking function, this
number is likely to be much higher, simply because the more “top”
attributes values a tuple has, the more likely a reasonable ranking
function would rank the tuple at the top. As a result, the query
cost in practice is usually even lower than what the average-case
analysis suggests, as we show in the experimental results.

4. SKYLINE DISCOVERY FOR RQ-DB
We now consider the RQ-DB case where range queries support

two-ended ranges, rather than one-ended as in the SQ-DB case.
Since RQ-DB has a more powerful interface, a straightforward so-
lution here is to directly use Algorithm SQ-DB-SKY. One can see
that the algorithm still guarantees complete skyline discovery.

The problem with this solution, however, lies in cases where |S|,
the number of skyline tuples, is large. Specifically, when |S| ap-
proaches the database size n, the worst-case query cost may actu-
ally be larger than the baseline query cost of O(m ·n) for crawling
the entire database over a RQ-DB interface [22]. This indicates
what SQ-DB-SKY fails to (or cannot, as it was designed for SQ-
DB) leverage - i.e., the availability of both ends on range queries
- may reduce the query cost significantly when |S| is large. We
consider how to leverage this opportunity in this section.

4.1 Key Idea: Algorithm RQ-DB-SKY
A Simple Revision and Its Problem: Our first idea for reducing
the query cost stems from a simple observation on the design of q2
to q4 described above: Instead of having them as three overlapping
queries, we can revise them to be mutually exclusive:

q2: WHERE A1 < t1[A1]
q3: WHERE A1 ≥ t1[A1] & A2 < t1[A2]
q4: WHERE A1 ≥ t1[A1] & A2 ≥ t1[A2] & A3 < t1[A3]

With this new design, all m branches from a node in the tree
(Figure 1) represent mutually exclusive queries. Interestingly, the
completeness of skyline discovery is not affected! For example,
any skyline tuple other than t1 still belongs to at least one of q2 to
q4.

The effectiveness of this revision is evident from one key obser-
vation - because of the mutual exclusiveness and the (still valid)
completeness of skyline discovery, now every skyline tuple is re-
turned by exactly one node in the tree. While this seemingly solves
all the problems in the query-cost analysis for SQ-DB-SKY, it un-
fortunately introduces another challenge:

Unlike in SQ-DB-SKY where the top-1 tuple returned by every
node is a skyline tuple, with this revised tree, a node might return a
tuple not on the skyline as the No. 1. This can be readily observed
from the design of q2 and q3: it is now possible for a tuple returned
by q3 to be dominated by q2 - as the space covered by q3 now
excludes the space of q2. Because of this new problem, the worst-
case query cost for this revised algorithm becomes O(n · m), as
it is now possible for each of the n tuples in the database (even
those not on the skyline) to be returned by a interior node in the
tree. While this bound may still be smaller than that of SQ-DB-
SKY when |S| approaches n, it may also be much worse when
|S| is small. Since we do not have any prior knowledge of |S|
before running the algorithm, we need a solution that adapts to the
different |S| and offers a consistently small query cost in all cases.

Algorithm RQ-DB-SKY: To achieve this, our key idea is to com-
bine SQ-DB-SKY with the above-described revision to be the more
efficient of the two. To understand the idea, note a 1-1 correspon-
dence between the tree constructed in SQ-DB-SKY and the revised
tree: In the revised tree, we map every query q in the tree of SQ-
DB-SKY to a query R(q) covering all value combinations match-
ing q but not any q′ in SQ-DB-SKY which appears before q in the
(depth-first) post-order traversal of the tree. Based on this 1-1 map-
ping, RQ-DB-SKY works as follows.

We traverse the tree in SQ-DB-SKY and issue queries in depth-
first preorder. A key additional step here is that, for each query q in
the tree, before issuing it, we first check all tuples returned by pre-
viously issued queries and check if any of these tuples match q. If
none of them does, then we proceed with issuing q and continuing
on with the traversal process.

Otherwise, if at least one previously retrieved tuple matches q,
then instead of issuing q, we issue its counterpart R(q). If R(q)
is empty, no new skyline tuple can be discovered from the subtree
of q. Thus, we should abandon this subtree and move on. If R(q)
returns as No. 1 a tuple t, then either t is dominated by a previously
retrieved (skyline) tuple, or it must be a (new) skyline tuple itself.
Either way, we must have never seen t before in the answers to the
issued queries. If t is dominated by a previously retrieved tuple, say
t′, then we generate the children of q according to t′. Otherwise,
we generate them according to t. In either case, we continue on
with exploring the subtree of q in depth-first preorder. Algorithm 2
depicts the pseudocode of RQ-DB-SKY.

The correctness of RQ-DB-SKY follows directly from that of
SQ-DB-SKY, because these two algorithms essentially follow the
exact same query sequence with only one exception: In RQ-DB-
SKY, when we are certain from the answer to R(q) that no skyline
tuple could possibly be discovered from the subtree of q, we forgo
the exploration of this subtree and move on. Instead, SQ-DB-SKY
does not have this early-termination detection (because the SQ-DB
interface does not support R(q)), and therefore has to complete the
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Algorithm 2 RQ-DB-SKY

1: S = {}; Seen = {}
2: traverse the SQ-DB-SKY tree in depth first preorder and at

each q in the tree
3: if @ t ∈Seen that matches q
4: T = Top-k(q)
5: if T contains k tuples
6: generate the children of q based on T0

7: else
8: T = Top-k(R(q))
9: if T contains k tuples

10: if ∃t′ ∈ S that dominates T0

11: generate the children of q based on t′
12: else, generate the children of q based on T0

13: Update S by T ; Seen=Seen ∪T

Figure 5: RQ-DB-SKY example tree

useless subtree exploration process. As we shall show in the next
subsection, this early-termination detection can lead to a significant
saving of query cost, especially when the number of skyline tuples
|S| is large.

THEOREM 3. Algorithm RQ-DB-SKY is guaranteed to discover
all skyline tuples.

PROOF. The proof can be constructed in analogy to that of The-
orem 2. The only difference is that, unlike in the proof for SQ-
DB-SKY where t might match more than one of the m branches
of a node, here t must match exactly one of the m branches, sim-
ply because these m branches are mutually exclusive by design
in RQ-DB-SKY. Despite of this difference, the logic of the proof
stays exactly the same: there must be exactly one branch of the root
satisfying t because otherwise t would be dominated by the tuple
returned by the root. Recursively, we can construct a path from
the root to a leaf node in the tree, such that t satisfies each and ev-
ery node on the path. Since every leaf node of the tree is a valid
or underflowing query, this means that the leaf node must return t,
contradicting the assumption that t is not discovered.

Once again, let us consider the dummy example provided in Fig-
ure2, and its corresponding RQ-DB-SKY tree in Figure 5. One can
see that applying R(q4)= WHERE A2 ≥ 3 AND A3 < 7, instead
of q4, causes that each skyline tuple appears in exactly one of the
branches.

4.2 Query-Cost Analysis
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Figure 6: simulation results for RQ-DB-SKY, in comparison with SQ-
DB-SKY

The key to the query-cost analysis of RQ-DB-SKY is to count
the number of internal, i.e., interior, nodes of the tree. There are
two important observations: First, the SQ-query q of a interior node
must match at least one skyline tuple, as otherwise it would have
to return empty which makes the node a leaf. Second, if a inte-
rior node is not the first (according to preorder) which returns the
skyline tuple, then the node’s RQ-query (i.e., R(q)) must return a
unique tuple in the database that does not match any node accessed
before it, because otherwise the node would return empty and be-
come a leaf. With these two observations, an upper bound on the
number of internal nodes is min(|S|m+1, n). As a result, the total
query cost of RQ-DB-SKY is O(m ·min(|S|m+1, n)).

One might wonder if, for RQ-DB-SKY, we can derive a sim-
ilar result to the average-case analysis of SQ-DB-SKY which is
oblivious to the data distribution. Unfortunately, the query cost of
RQ-DB-SKY is data-dependent. The reason is simple: the query
cost of RQ-DB-SKY is essentially determined by how many non-
skyline tuples match and are returned by the RQ-queriesR(q). This
number, however, depends on the data distribution: e.g., if all non-
skyline tuples are dominated by the skyline tuple returned by SE-
LECT *, then the query cost of RQ-DB-SKY can be extremely
small (≤ m · |S|). Meanwhile, if very few non-skyline tuples are
dominated by skyline tuples returned from nodes at the top of the
tree, then RQ-DB-SKY requires many more queries.

Because of the data-dependent nature of RQ-DB-SKY’s query
cost, to demonstrate the power of its early-termination idea, we re-
sort to the numeric simulations conducted in Section 3. Figure 6
depicts how the query costs of SQ- and RQ-DB-SKY change with
the percentage of tuples on the skyline (when the database con-
tains 2000 tuples each with 2 Boolean i.i.d. uniform-distribution
attributes). Note that we control the percentage of skyline tuples by
adjusting the correlation between the two attributes, where positive
correlation leads to fewer skyline tuples. Interestingly, one can ob-
serve from the figure that while the performance of RQ- and SQ- do
not differ much when |S| is small, RQ- has a much smaller query
cost when |S| is large - consistent with the theoretical analysis.

5. SKYLINE DISCOVERY FOR PQ-DB
We now turn our attention point-query PQ-predicates. We first

discuss the 2D case (i.e., a database with two attributes) and present
an instance-optimal solution PQ-2D-SKY. Then, after pointing out
the key differences between 2D and higher dimensional cases, we
present Algorithm PQ-DB-SKY, which discovers all skyline tuples
from a higher dimensional database by calling (a variation of) PQ-
2D-SKY as a subroutine.

5.1 2D Case
Design of Algorithm PQ-2D-SKY: We start with SELECT * which
is guaranteed to return a skyline tuple, say (x1, y1). As shown in
Figure 7, we can now prune the 2D search space (for skyline tu-
ples) into two disconnected subspaces, both rectangles. One has
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Figure 7: Pruning, R1, R2, & demo of algorithm execution

diagonals (0, ymax) and (x1, y1), while the other has (x1, y1) and
(xmax, 0), where xmax and ymax are the maximum values for x
and y, respectively. We do not need to explore the rectangle with
diagonals (0, 0) and (x1, y1) because there is no tuple in it (as oth-
erwise it would dominate (x1, y1)). We do not need to explore the
rectangle with diagonals (x1, y1) and (xmax, ymax) either because
all tuples in it must be dominated by (x1, y1).

From this point forward, our goal becomes to discover skyline
tuples by issuing 1D queries - i.e., queries of the form of either
x = x0 or y = y0. An important observation here is that any 1D
query we issue will “affect” (precise definition to follow) exactly
one of the two above-described subspaces. For example, if x0 >
x1, query x = x0 affects only R2 in Figure 7: It either proves part
of the rectangle to be empty (when the query returns empty or a
tuple with y > y1), or returns a tuple in the second rectangle that
dominates all other tuples with x = x0. In either case, Rectangle
R1 remains the same and still needs to be explored. As another
example, if y0 > y1, then query y = y0 affects only R1.

This observation actually leads to a simple algorithm that is guar-
anteed to be optimal in terms of query cost: at any time, pick one
of the remaining (rectangle) subspaces to explore. Let the diagonal
points of the subspace be (xL, yT) and (xR, yB), where xL ≤ xR
and yT ≥ yB. If xR − xL < yT − yB, then we issue query
x = xL. Otherwise, we issue y = yB. For example, in Figure 7, if
xmax − x1 > y1, we issue y = 0.

Note the implications of the query answer on the remaining sub-
space to search: Consider query q: x = xL as an example. If q
returns empty, then the subspace is shrunk to between (xL +1, yT)
and (xR, yB). Otherwise, if q returns (xL, y2), then the subspace
is shrunk to between (xL + 1, y2) and (xR, yB). Either way, the
subspace becomes smaller and remains disjoint from other remain-
ing subspace(s). For example, in Figure 7, if y = 0 is empty, R2 is
shrunk to between (x1, y1) and (xmax, 1). Otherwise, if it returns
(x2, 0), then the subspace is now between (x1, y1) and (x2, 1).

What we do next is to simply repeat the above process, i.e., pick
a subspace, determine whether the width or height is larger, and
issue the corresponding query. This continues until no subspace
remains. Algorithm 3 depicts the pseudo code for PQ-2D-SKY.

Algorithm 3 PQ-2D-SKY

1: T = Top-k(SELECT * FROM D); S = {T0}
2: Partition search space into rectangles R1 and R2 based on T0

3: while search space is not fully explored
4: Pick a rectangle and identify point query q to issue
5: T = Top-k(q); S = S ∪ T0

6: if T contains k tuples, prune search space based on T0

Instance Optimality Proof: We now prove the instance optimality
of PQ-2D-SKY, i.e., for any given database, there is no other algo-
rithm that can use fewer queries to discover all skyline tuples and
prove that all skyline tuples have been discovered. Note that the
latter requirement (i.e., proof of completeness) is important. To see
why, consider an algorithm that issues SELECT * and then stops.

For a specific database that contains only one skyline tuple, this al-
gorithm indeed finds all skyline tuples extremely efficiently. But it
is not a valid solution because it cannot guarantee the completeness
of skyline discovery.

We prove the instance optimality of PQ-2D-SKY by contradic-
tion: Suppose there exists an algorithmA that requires fewer queries.
Consider the (rectangle) subspace between (xL, yT) and (xR, yB).
If xR − xL < yT − yB yetA does not issue x = xL, then the only
alternative is to issue queries y = yB, yB + 1, . . ., yc, where yc is
the y-coordinate value of the tuple returned by x = xL or, in the
case where x = xL returns empty, yc = yT. An example of this
is illustrated in Figure 7: Suppose ymax − y1 > x1. If A does not
issue x = 0, then it must issue y = y1, y2, . . . , yc. This is be-
cause, in order to guarantee the completeness of skyline discovery,
one must “prove” the emptiness of points (xL, yB), (xL, yB + 1),
. . ., (xL, yc − 1), (resp. (x0, y1), . . . , (x0, yc − 1) in Figure 7)
while retrieving tuple (xL, yc) (resp. (x0, yc) in Figure 7). Given
that x = xL is not issued, the only feasible solution is to issue the
above-described y = yi queries.

Yet this contradicts the optimality of Algorithm A. To under-
stand why, consider two cases respectively: First is when x = xL
returns empty. In this case, A calls for yT − yB + 1 queries to be
issued, while PQ-2D-SKY issues at most xR − xL queries. Since
xR−xL < yT−yB,A is actually worse. Now consider the second
case, where x = xL does return a tuple (xL, yc). In this case, A
calls for c queries to be issued. We also require at most c queries,
as y = yc is no longer needed given the answer to x = xL. This
again contradicts the superiority of A.
Query Cost Analysis: Having established the instance optimality
of PQ-2D-SKY, we now analyze exactly how many queries it needs
to issue. LetA1 andA2 be the two attributes and t1, . . . , t|S| be the
skyline tuples in the database. Without loss of generality, suppose
ti is sorted in the increasing order of A1, i.e., ti[A1] ≤ ti+1[A1].
Note that, since ti are all skyline tuples, correspondingly there must
be ti[A2] ≥ ti+1[A2]. Denote as t0 and t|S|+1 the two diagonal
points of the domain, i.e., t0 = 〈0,max(Dom(A2))〉 and t|S|+1 =
〈max(Dom(A1)), 0〉. One can see from the design of PQ-2D-
SKY that its query cost is simply

C =

|S|∑
i=0

min(ti+1[A1]− ti[A1], ti[A2]− ti+1[A2]). (11)

Immediately, following Equation 11, a few upper bounds on C
are: e.g., C ≤ t1[A2], C ≤ t|S|[A1], and C ≤ mini∈[1,|S|]
(ti[A1]+ti[A2]). These upper bounds indicate a likely small query
cost in practice. To understand why, recall that most web interfaces
only present a ranking attribute as PQ when it has a small domain.
In addition, it is highly unlikely for such an attribute to have empty
domain values - i.e., v ∈ Dom(Ai) that is not taken by any tuple
in the database - because otherwise users of the PQ interface would
be frustrated by the empty result returned after selecting Ai = v.
When every value in Dom(A1) and Dom(A2) is occupied, unless
the number of skyline tuples is very large, ti[Aj ] is likely small for
ti to be on the skyline, leading to a small query cost in practice. We
verify this finding through experimental results in Section 8.

5.2 Higher-D Case: Negative Results
Unfortunately, the optimal 2D skyline discovery algorithm can-

not be directly extended to solve the higher-dimensional cases. This
subsection describes two main obstacles which explains why: The
first proves that there does not exist any deterministic algorithm that
can be instance optimal for higher-D databases like what PQ-2D-
SKY achieves for 2D. The second obstacle shows that even if we
are willing to abandon optimality and consider a greedy algorithm
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Figure 8: Illustration of negative-proof construction

that deals with each 2D subspace at a time for higher-D databases,
PQ-2D-SKY still cannot be directly used.

Fortunately, the second negative result also sheds positive lights
towards solving the higher-D problem. As we shall show in the next
subsection, it is indeed possible to revise PQ-2D-SKY and retain
instance optimality for any 2D subspace of a higher-D database
- a result that eventually leads to our design of PQ-DB-SKY for
higher-D databases.

Non-existence of Optimal Higher Dimensional Skyline Discov-
ery Algorithms: The first obstacle brought by higher-D skyline
discovery that makes it impossible for any deterministic algorithm
to achieve instance optimality as in the 2D case discussed above.
Here we shall first describe the obstacle, and then discuss why it
eliminates the possibility of having an optimal (deterministic) sky-
line discovery algorithm.

The obstacle here is the loss of a property which we refer to as
“guaranteed single skyline return” - i.e., every 1D query (which is
the focus of consideration in 2D skyline discovery) is guaranteed to
return the (at most one) skyline tuple covered by the query. 2D and
higher dimensional queries, on the other hand, may not reveal all
skyline tuples. Specifically, even when k > 1, some of the returned
tuples may not be skyline tuples even when there are skyline tuples
matching the query that are not returned.

This property makes it no longer possible to guarantee the op-
timality of skyline discovery without knowledge of the actual data
distribution. To understand why, consider a simple example de-
picted in Figure 8, where the database features a top-2 interface
(i.e., k = 2) and contains the following five tuples (in addition to
potentially many others): (1, 1, 1), (2, 2, 2), (2, 0, 0), (0, 2, 0), (0,
0, 2). Suppose that the SELECT * query returns (1, 1, 1) and (2, 2,
2); while SELECT * FROM D WHERE z = 0 returns (2, 0, 0) and
(0, 2, 0). Further assume that neither query SELECT * FROM D
WHERE x = 0 nor WHERE y = 0 returns more than one skyline
tuples - e.g., say the first one returns (0, 2, 0) and (0, 3, 0) and the
latter returns (2, 0, 0) and (3, 0, 0).

The first observation we make here is that the optimal query plan
consists of only 3 queries (no matter what the other tuples are):

SELECT * FROM D
SELECT * FROM D WHERE z = 0
SELECT * FROM D WHERE x = 0 AND y = 0

One can see that, given the above setup, these three queries are
guaranteed to return all five aforementioned tuples, which by them-
selves prove that there are only four skyline tuples in the database:
(1, 1, 1), (2, 0, 0), (0, 2, 0), and (0, 0, 2), because any other possible
value combination must fall into one of the two categories: Either
it is dominated by at least one of the four tuples, or it must be one
of (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1). Nonetheless, these four
value combinations have been proven non-existent in the database
as otherwise it must be returned by the 3 issued queries.

The next critical observation is that any optimal query plan must
contain SELECT * FROM D WHERE z = 0. The reason here is

simple: given the four skyline tuples and the above assumptions,
the only query that returns more than one skyline tuple is SELECT
* FROM D WHERE z = 0. In other words, if this query is not
included in a query plan, then the query plan must contain at least
four queries - i.e., it is not an optimal plan.

It is exactly this observation which eliminates the existence of
a deterministic yet instance-optimal skyline discovery algorithm.
To understand why, consider a slight change to the query-answer
setup when all tuples in the database remain exactly the same: now
query WHERE z = 0 returns (0, 2, 0) and (0, 3, 0), while WHERE
x = 0 returns (0, 2, 0) and (0, 0, 2). In analogy to the above anal-
ysis, now the optimal query plan must contain SELECT * FROM
D WHERE x = 0 (along with, say, SELECT * and SELECT *
FROM D WHERE y = 0 AND z = 0, to make a 3-query optimal
plan) and must not contain SELECT * FROM D WHERE z = 0.

The problem with this new setup, however, is that no determin-
istic algorithm can achieve optimality in both this setup and the
original one, because it simply cannot distinguish between the two
cases without committing to a query that is part of the optimal plan
for one but cannot be part of the optimal plan for the other. For
example, the SELECT * query returns the exact same answer in
the two cases - making it impossible to make the distinction. On
the other hand, while SELECT * FROM D WHERE z = 0 does
distinguish between the two cases, the very issuance of this query
already means the loss of instance optimality, as it cannot be part
of an optimal query plan for the second setup. More formally, the
only queries that enable the distinction are those that have differ-
ent query answers between the two cases - i.e., query SELECT *
FROM D WHERE z = 0 and query WHERE x = 0 - yet neither
can appear in both optimal query plans.

One can observe from the above discussions what makes instance-
optimal skyline discovery impossible over a higher-D database:
Unlike in the 2D case where every 1D query always returns the
one and only skyline tuple matching the query (or returns empty)
no matter what the ranking function actually is, in higher-D cases
whether and how many skyline tuples are “hidden” from the answer
to a matching 2D query depends on the ranking function. Since the
algorithm has no prior knowledge of the ranking function (which
might even differ for different queries), it has to rely on the returned
query answers to determine which queries to issue next. This elim-
inates the possibility of an instance-optimal algorithm because, by
the time the algorithm can learn enough information about the rank-
ing function and the underlying database, it may have already is-
sued unnecessary queries, making the algorithm suboptimal.

No Direct Extension to Optimal 2D Subspace Discovery: Since
the above obstacle eliminates the possibility of an instance-optimal
h-D skyline discovery algorithm, we now turn our attention to a
simpler, greedy, version of the solution: how about we partition the
higher-dimensional space into mutually exclusive 2D subspaces,
and then run the instance-optimal 2D skyline discovery algorithm
over each subspace?

Unfortunately, even in this case, the 2D algorithm cannot be di-
rectly applied without losing its optimality. To understand why,
recall that in the 2D case, there is a clean “separation” of effect for
a query answer: no matter what the query answer is, it shrinks one
and exactly one rectangle subspace (to another rectangle). This en-
ables us to devise a divide-and-conquer approach which focuses on
one (rectangle) subspace at a time.

This clean property, however, is lost once the dimensionality in-
creases to 3 (and above). For example, consider the search space
in the 3D case after pruning based on the answer of SELECT *
FROM D, say point (x, y, z). One can see that the pruning carves
out two (small) cubes from the original space - one with diagonal
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Figure 9: Illustration of example

Figure 10: Illustration of example

points being (0, 0, 0) and (x, y, z); while the other with diagonal
points being (x, y, z) and (xmax, ymax, zmax). The pruned result,
however, is still one connected space with a complex shape as de-
picted in Figure 9, which may become more and more complex
once pruning is done with additional query answers.

After projecting the pruned subspace to each 2D subspace, one
can see that the pruned space is now of the shape of a rectangle
“minus” a number of smaller rectangles. For example, consider a
simple 3D case where the domains of x, y and z are [0, 6], [0, 9],
and [0, 1], respectively. Suppose that the SELECT * query returns
tuple (4, 6, 1), while SELECT * FROM D WHERE z = 0 returns
tuple (0, 9, 0). We now consider the problem of skyline discovery
the 2D subspace defined by query WHERE z = 0.

Figure 10 depicts the shape of this subspace after pruning based
on the SELECT * query. One can see that three rectangles are
excluded from the original space of [0, 6] × [0, 9]. One is x = 0 -
it is removed because the return of (0, 9) guarantees no other tuple
with z = 0 could have x = 0. Another is y = 9 - it is excluded
because any tuple within must be dominated by (0, 9). The final
excluded rectangle has diagonals (0, 0) and (4, 6). It is excluded
because, according to the SELECT * query answer, we are assured
that no tuple exists with x ≤ 4, y ≤ 6, and z = 0, as otherwise
this tuple must have been returned ahead of (4, 6, 1).

Note, however, a significant difference with the original 2D case:
the rectangle with diagonals (4, 6) and (6, 9) is not removed. Un-
like in the original case where the other diagonal rectangle can also
be removed because all points in it are dominated by the returned
tuple, in this new case the pruning of rectangle (0,0)-(4,6) is not
based on a tuple with z = 0. As such, it is still possible for a tu-
ple in rectangle (4,6)-(6,9) to be a skyline tuple. In the following
discussions, one can see that it is exactly this change which intro-
duces additional complexity to the design of 2D-subspace skyline
discovery in higher-dimensional databases.

Figure 11: Illustration of example

We now show that the 2D algorithm loses its optimality when
being applied to this pruned 2D space. Note that, according to the
algorithm, we shall start with issuing x = 1, 2, . . . because the
domain size of x (i.e., 6 after pruning) is smaller than that of y (i.e.,
9 after pruning). Consider the case when there is only one more
tuple (in addition to (0, 9) returned by the SELECT * query) in
this subspace: (5, 0). One can see that this algorithm will issue 5
queries - i.e., x = 1, . . . , 5, after which it stops execution because
all the subspace can then be pruned by (5, 0). Nonetheless, the
optimal query plan for this subspace consists of only 3 queries -
e.g., WHERE x = 5, WHERE y = 7, and WHERE y = 8. This
shows that the original 2D algorithm is no longer optimal for this
subspace skyline discovery task.

Note that this problem cannot be simply solved by partitioning
the subspace into rectangles before applying the 2D algorithm over
each. This can be seen from another simple construction: Consider
a change to the above database which makes (2, 2, 1) the tuple
returned by the SELECT * FROM D query. The pruned subspace
in this case is depicted in Figure 11. One can see that, if we partition
the subspace into the three rectangles marked in the figure, then we
would have issued queries WHERE y = 0 and WHERE y = 1 for
the bottom rectangle - yet these two queries cannot be in the optimal
plan when there is no tuple other than (0, 9, 0) on the plane.

5.3 Algorithm PQ-DB-SKY

5.3.1 Optimal 2D Subspace Skyline Discovery
To develop an instance-optimal algorithm for discovering all sky-

line in a 2D subspace, we start by considering the possible shape of
such a subspace. As discussed above, the subspace may be pruned
by answers to queries that contain the subspace. Without loss of
generality, consider a 2D subspace S “spanning” on attributes A1

and A2. Let S[Ai] (i > 2) be the value of the subspace on any
other attribute. If a query containing the subspace returns a tuple
t such as ∀i > 2, t[Ai] ≥ S[Ai], then we can prune from S the
rectangle with diagonals (0, 0) and (t[A1], t[A2]), because any tu-
ple in this rectangle would dominate t, contradicting the fact that
t is returned by a query containing S. Figure 12a depicts such a
scenario.

Besides such pruning, another possible way to prune S is to ex-
clude from it rectangles that we are no longer interested in. For
example, if we have retrieved a tuple t such that ∀i > 2, t[Ai] ≤
S[Ai], then we are no longer interested in the rectangle correspond-
ing to A1 ≥ t[A1] and A2 ≥ t[A2], because any other in the rect-
angle would be dominated by t and therefore cannot be a skyline
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(a) Example of empty and dominated area

(b) “Block-diagonal” rectangles

Figure 12: Illustration of idea for PQ-2DSUB-SKY

tuple. One can see that the end result of pruning is a shape like
what is depicted in Figure 12a.

Given the pruned shape, the key idea of our PQ-2DSUB-SKY
algorithm is depicted in Figure 12 and can be stated as follows.
First, we remove all rows and columns that have already been com-
pletely pruned. Then, we consider a series of “block-diagonal”
rectangles as depicted in Figure 12b. Formally, if t1 : (x1, y1) and
t2 : (x2, y2), as shown in the figure, are adjacent “lower-bound”
skyline points in the subspace, then we add to the series a rectangle
with diagonals (x1, y1) and (x2, y2).

There are two critical observations here that lead to the instance
optimality of this idea: First, no matter which tuples there are in
the database, these rectangles must be covered for a complete dis-
covery of all skyline tuples. For example, consider a point outside
these rectangles, say (x2 + 1, y1 + 1). If (x2, y1) turns out to be
occupied by a tuple, then (x2 + 1, y1 + 1) can be pruned without
any query covering the rectangle containing it (say the one with di-
agonals (x2+1, y1+1) and (xmax, ymax)). On the other hand, any
point inside one of the series of rectangles cannot be pruned unless
there has been at least one query “hitting” the rectangle containing
the point.

The second critical observation is that at least one of the series
of rectangle must “agree” with the overall subspace (i.e., the one
after removing all completely pruned rows and columns) on which
dimension to follow for discovery (as dictated by the skyline dis-
covery rule in Algorithm PQ-2D-SKY). The underlying reason is
straightforward: let the width and height of each rectange in the se-
ries, sayRi, bew1 and h1, respectively. Note that the overall width
and height of the subspace satisfy

w = w1 + · · ·+ ws, (12)
h = h1 + · · ·+ hs, (13)

where s is the number of rectangles in the series. One can see that,
clearly, if w < h, there must be at least one rectangle in the series
withwi < hi - i.e., the rectangle “agrees” with the overall subspace
to discover skylines along the y-dimension (by issuing queries of
the form SELECT * FROM D WHERE x = v).

Based on these two observations, we can now develop Algorithm
PQ-2DSUB-SKY. It starts with the above two steps, and then se-
lects any arbitrary rectangle in the series so long as it agrees with

the overall pruned subspace on which dimension to follow. Based
on the second observation, there must exist at least one such rect-
angle. We crawl this rectangle using the previously developed 2D
skyline discovery algorithm, and then repeat the entire process -
i.e., starting once again by removing rows and columns that have
been completely discovered. Algorithm 4 depicts the pseudo code

Algorithm 4 PQ-2DSUB-SKY
1: Assuming that A1 and A2 create the current subspace S
2: foreach query q that contains S and tuple t discovered by q
3: if ∀i > 2, t[Ai] ≥ S[Ai]
4: Remove the rectangle (0,0) and (t[A1], t[A2]) from S
5: foreach discovered tuple t that ∀i > 2, t[Ai] ≤ S[Ai]
6: Remove the rectangle corresponding to A1 ≥ t[A1] and
A2 ≥ t[A2] from S

7: while S is not completely pruned
8: Remove the pruned rows and columns
9: Construct the “block-diagonal” rectangles (R) between ad-

jacent “lower-bound” skyline points in the subspace
10: Apply PQ-2D-SKY on a rectangle r in R that agrees with

the overall pruned subspace on the dimension to follow

of PQ-2DSUB-SKY. The proof of instance optimality for this al-
gorithm is straightforward: As proved in Section 5.1, the skyline
discovery in each rectangle in the series is instance optimal. As
discussed above, any complete discovery of skyline tuples in the
subspace must cover all rectangles. Thus, the only remaining issue
to ensure that the issued queries indeed cover the entire subspace
(i.e., containing not only the series of rectangles but the other un-
pruned part as well). Since the rectangle we choose at each step
always has the same discovery direction as the entire subspace, one
can see that either the discovery of all rectangles are along the same
dimension - i.e., a complete discovery, or the direction changes
when a returned tuple triggers pruning of not only the rectangle
being processed but also the part of the subspace dominated by the
rectangle - i.e., the skyline discovery will still be complete.
Design and Analysis of PQ-DB-SKY: Our proposed technique for
higher-dimensional skyline discovery has a key step of applying the
application of this algorithm over each 2D subspace of a higher-
dimensional space.

Algorithm 5 PQ-DB-SKY

1: T = Top-k(SELECT * FROM D); S = {T0}
2: Prune search space based on T0

3: while search space is not fully explored
4: Pick the 2D subspace spanning 2 attributes with largest do-

main sizes
5: Identify skyline tuples on subspace using PQ-2DSUB-SKY

As discussed above, instance optimality is lost once the dimen-
sionality reaches 3. A key reason for this is because one does
not know which dimension to “crawl first”, i.e., how to partition
a higher-D space into 2D subspaces (e.g., along x, y or z?). Fortu-
nately, heuristics for dimension selection are easy to identify. The
most important factor here is the domain size. To understand why,
note that the domain sizes for the two dimensions selected into the
2D subspace have an additive effect on query cost, while the others
have a multiplicative effect. Thus, generally, we should choose the
two attributes with the largest domain sizes as the 2D subspace.

Based on the heuristics, the pseudo code of PQ-DB-SKY is de-
picted in Algorithm 5. Given the exponential nature of dividing a
higher-D space into 2D subspaces, the worst-case query cost grows
exponentially with the number of attributes. Nonetheless, as argued
in the 2D case, the small domain sizes and the value-occupancy
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property usually lead to a much smaller query cost in practice. Such
an effect is likely amplified even further in higher-D cases, as we
shall show in the experimental results in Section 8, because of the
aforementioned heuristics which places the largest domain-sized
attributes in the 2D subspace, leaving the other (multiplicative) at-
tributes with even smaller domains.

Suppose Vm1 and Vm2 are the attributes with the largest domain
size, and V ′ = V \{Vm1 , Vm2}. PQ-DB-SKY processes the 2D
plane for each value combination in V ′. Assume for each com-
bination of values vc for V ′ there exists a sorted list, Lvc , of its
skyline tuples with regard to their values on Vm1 , extended by the
top-left and bottom-right corner points. Using Equation 14, the fol-
lowing is an upper-bound for PQ-DB-SKY query cost, which is in
the order of O((|Vm1 |+ |Vm2 |)×

∏
∀v′∈V ′

|v′|):

C =
∑
· · ·
∑

∀vc for V ′

|Lvc |∑
i=0

min(Lvc [i].Vm2 − Lvc [i+ 1].Vm2 ,

Lvc [i+ 1].Vm1 − Lvc [i].Vm1)

(14)

Nonetheless, it is also important to note that when the number of
attributes is relatively small and the attribute selection is straight-
forward (e.g., when two attributes have significantly larger domains
than the others), Algorithm PQ-DB-SKY can approach the prov-
able lower bound of query cost for skyline discovery. To illustrate
this, in the following special-case example, we show that Algo-
rithm PQ-DB-SKY achieves a query cost with constant difference
from the proved (instance-optimal) lower bound.
Case Study for PQ-DB-SKY: Let there be a 3D database with
attributes x, y, and z. The database ranking function follows a
simple rule: If there is a tuple with z < z0 that satisfies a query,
the query will never return any tuple with z ≥ z0 (i.e., z is the first-
priority ordering attribute). Furthermore, for any possible value of
x, say vx, there is at least one tuple in the database with x = vx
and z = 0. Similarly, for any possible value vy of y, there is at
least one tuple in the database with y = vy and z = 0.

An interesting property for this construction is that it excludes
most higher-dimensional (i.e., 2D or 3D) queries from considera-
tion in building the optimal query plan. The reason for doing so is
as follows. First, note that the only 3D query possible will return
the same result as SELECT * FROM D WHERE z = 0. Second,
every 2D query of the form x = vx or y = vy is guaranteed to re-
turn a tuple with z = 0 - i.e., they become equivalent with queries
(x = vx AND z = 0) and (y = vy AND z = 0), respectively.

According to these two observations, one can see that there is al-
ways an optimal query plan which only includes a subset of the fol-
lowing queries: (a) 2D queries of the form z = vz; (b) 1D queries
because any other query is equivalent with a query of these two
types. We now consider the queries issued by the above-described,
optimal, 2D skyline crawling algorithm on the plane with z = 0.
An important observation here is that any query with (conjunctive)
predicate z = vz (vz 6= 0) cannot reveal any information about
tuples (or even the data space) with z = 0. As such, we consider
next the following question: can the queries in optimal 3D skyline
crawling query plan with predicate z = 0 significantly differ from
the optimal 2D plan?

To answer this question, we need to consider the alternative queries
that can be included in the 3D optimal plan - i.e., those queries that
contribute to the skyline crawling of the plane z = 0 yet are not
part of the 2D optimal plan. One can see from the above discus-
sions that these queries must be 1D queries of the form x = vx
AND y = vy - which reveals whether a tuple occupies the point

(vx, vy, 0) on the plane z = 0. We refer to such 1D queries as xy
queries.

Now consider how many 1D queries one must issue to “replace”
a query in the optimal 2D plan. An important observation here
is the on number of unique points “covered” by a query q in the
optimal 2D plan, which we refer to as the unique coverage count
of q. By “unique points” we mean points covered by exactly one
query q in the optimal plan. In other words, one cannot determine
if a skyline tuple resides on the point if q is removed from the query
plan. The interesting observation about the unique coverage count
is that, for any h ≥ 0, there must be at most h queries with a
unique coverage count of h or less. This easily follows from the
2D optimality proof discussed in Section 5.1.

Given this observation, one can derive the optimization ratio of
simply running the 2D optimal algorithm over z = 0, 1, . . . , |Vz|−
1, respectively. Suppose that the query cost of doing so on z = i is
ci, leading to an overall query cost of C2D =

∑|Vz |−1
i=0 ci. One can

see that any 3D skyline crawling algorithm must have a query cost
of at least

C ≥ min
h≥0

|Vz |−1∑
i=0

(ci − h)

+
h(h+ 1)

2
(15)

= min
h≥0

(
C2D − |Vz|h+

h(h+ 1)

2

)
≥ C2D −

|Vz|2

2
(16)

6. SKYLINE DISCOVERY FOR MIXED-DB
We now combine our ideas for SQ, RQ and PQ to produce MQ-

DB-SKY, our final algorithm for a mixture of all attributes.

6.1 Overview
When the hidden database features a mixture of range- and point-

predicates, a straightforward idea appears to be applying RQ-DB-
SKY directly over the range-predicate attributes and not using the
point ones at all (by setting them to *), because RQ-DB-SKY is sig-
nificantly more efficient than PQ-DB-SKY. The problem, however,
is that doing so misses skyline tuples, as shown below.

First, note that by setting Ai = ∗ on all point-predicate at-
tributes, the skyline tuples discovered by applying RQ-DB-SKY
must indeed be skyline tuples. The problem here, however, is
that the completeness proof no longer holds because a skyline tu-
ple might be dominated by another tuple on all range-predicate at-
tributes. Such a tuple will be missed by RQ-DB-SKY. Fortunately,
the missing tuples must share a common property which we refer to
as the range-domination property: every tuple t missed here must
be dominated by an already-discovered skyline tuple, say D(t), on
all range attributes. Meanwhile, tmust surpassD(t) on at least one
of the point attributes.

Range-domination is an interesting property because it signifi-
cantly shrinks the search space for finding the remaining skyline
tuples. Consider a simple example where the execution of RQ-DB-
SKY returns only one tuple t0. In this case, we can define our new
search space (for all missing skyline tuples) by simply constructing
a conjunctive query with predicates Ai ≥ t0[Ai] for every range-
predicate attribute Ai. Depending on the value of t0 and the data
distribution, these conjunctive predicates may significantly reduce
the space we must search through with PQ-DB-SKY.

When the range attributes only support one-ended ranges, the
above search-space-pruning idea does not work because predicates
like Ai ≥ t0[Ai] are not supported. Nonetheless, it is still possible
to prune the search space because, in order for a missing tuple to be
on the skyline, it must dominate an already discovered tuple on at
least one point-predicate attribute. In other words, in the execution
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of PQ-DB-SKY, we no longer need to consider value combinations
of point-predicate attributes that are dominated by all discovered
tuples. While this idea has a much weaker pruning power than the
above one, it works for the case of two-ended ranges as well, and
can be readily integrated with the above idea.

In the following discussions, we shall first describe our key idea
for leveraging the pruning power afforded by two-ended ranges.
Then, we develop our most generic Algorithm MQ-DB-SKY which
supports a mixture of two-ended range, one-ended range, and point-
predicate attributes.

6.2 Details for Leveraging Two-Ended Ranges
Before presenting our final MQ-DB-SKY algorithm, an impor-

tant issue remains on how exactly to leverage the above-described
RQ-based search-space pruning. A straightforward method is to
construct for each discovered skyline tuple ti the above-described
subspace defined by conjunctive predicates Ai ≥ ti[Ai], and then
run PQ-DB-SKY over the space. The problem, however, is that
PQ-DB-SKY cannot be directly used in this case because its 2D-
subspace-discovery subroutine relies on an important property: if
a tuple matches but is not returned by a 1D query q0 as the No. 1
tuple, then it cannot be on the skyline. Unfortunately, this property
no longer holds in the mixed case.

To address this problem, we devise a new subroutine MIXED-
DB-SKY as follows. For each skyline tuple t0 discovered by the
range-query algorithm, let predicate P (t0) be (t[A1] ≥ t0[A1]) &
· · · & (t[Ah] ≥ t0[Ah]) for all range attributes A1, . . . , Ah. For
each point attribute Bi(i ∈ [1, g]) and each value v < t0[Bi], we
construct a query q: WHERE P (t0) & (t[Bi] = v).

If this query returned empty, we move on to the next query. The
premise (of the efficient execution of this algorithm) is that, in prac-
tice, most such queries q will return empty, quickly pruning the re-
maining search space. If q returns at least one tuple, we need to
start crawling the subspace defined by q. Now recall our PQ-DB-
SKY algorithm for point-query skyline discovery. Our first step
over there is to “partition” the space into 2-dimensional subspaces
(i.e., by enumerating all possible value combinations for the other
g− 2 attributes, where g is the number of point attributes) and deal
with them one after another. This step remains the same. Specif-
ically, at any point we have an empty answer, we can stop further
partitioning the current subspace. When we go all the way to a 2-
dimensional subspace (without being stopped by an empty answer)
then we’ll have to crawl the entire 2D plane to find all tuples in it,
instead of using the “2D skyline discovery” approach in PQ-DB-
SKY. This is the only difference with MIXED-DB-SKY.

A concern with this design is the large number of times MIXED-
DB-SKY may have to be called to completely discover the skyline.
Note that a single call of MIXED-DB-SKY without any appended
predicates is sufficient to unveil all skyline tuples. Yet when we
append the range predicates to prune the search space, the repeated
executions of MIXED-DB-SKY, especially many skyline tuples are
discovered by RQ-DB-SKY, may lead to an even higher query cost.

To address this problem, we consider a slightly different solu-
tion of maintaining a single execution of MIXED-DB-SKY. This
time, instead of designing mTE conjunctive predicates for each of
the discovered skyline tuples, we do so only once for the union
of (dominated) data spaces corresponding to all of them. Specifi-
cally, for each two-ended range attributeAj , its corresponding (ap-
pended) predicate is now

Aj ≥ min(t1[Aj ], . . . , th[Aj ]), (17)

where t1, . . . , th are the initially-discovered skyline tuples. One
can see that these predicates ensure comprehensiveness of skyline

discovery, as any tuple that fails to satisfy (17) must not be domi-
nated by any discovered tuple on the range-predicate attributes - in
other words, this tuple must have already been discovered by RQ-
DB-SKY. On the other hand, given the (relatively) small number of
skyline tuples, min(t1[Aj ], . . . , th[Aj ]) may still have substantial
pruning power, yet reducing the number of executions of MIXED-
DB-SKY to exactly 1.

6.3 Algorithm MQ-DB-SKY
Algorithm 6 MQ-DB-SKY
1: S = apply RQ-DB-SKY() on Range predicates; P =“”
2: foreach range attribute r ∈ R
3: append P by “AND t[r] ≥ min∀tj∈S(tj [r])”
4: foreach point attribute Bi and each value v <

max∀tj∈S(tj [Bi])
5: q: WHERE P AND (t[Bi] = v)
6: T = Top-k(q); update S by T
7: if T contains k tuples
8: partition the space defined q in 2D planes
9: foreach plane, crawl the tuples in it and update S

We now combine all the above ideas to produce our ultimate
(most generic) algorithm, MQ-DB-SKY, which supports any arbi-
trary combination of two-ended range, one-ended range, and point
predicate attributes. Note that when there are two-ended range
attributes in the database, we use the pruning idea discussed in
the above subsection. When there are only one-ended range at-
tributes besides point ones, our algorithm is limited to using the
weaker pruning idea discussed in Section 3. If there are only one-
ended range, two-ended range, or point-predicate attributes in the
database, MQ-DB-SKY is reduced to SQ-, RQ-, and PQ-DB-SKY,
respectively. Finally, if there are a mixture of one-ended and two-
ended range-predicate attributes but no point-predicate attribute in
the database, MQ-DB-SKY is reduced to a simple revision of RQ-
DB-SKY which leverages the availability of “>” predicates on only
attributes that support two-ended ranges.

7. EXTENSIONS

7.1 Anytime Property
An desirable feature shared by all algorithms developed in the

paper is their anytime property - i.e., one can stop the algorithm ex-
ecution at any time to return a subset of all skyline tuples. One can
see that this property can be very useful for discovering the skyline
over real-world web databases, as many of them enforce a (many
times secret and dynamic) limit on the number of queries that can
be issued from an IP address (or an API account) per day. Without
knowing such a limit ahead of time, it becomes extremely impor-
tant to ensure that the algorithm returns as many skyline tuples as
possible (instead of simply returning a failure message) when the
query limit is triggered.

In SQ-DB-SKY, note that any tuple returned by an issued query
is a skyline tuple. Thus, the property always holds. In RQ-DB-
SKY, note if we traverse the tree in a depth-first fashion, then a tuple
returned is either on the skyline or dominated by one of the already
discovered skyline tuple. Thus, the anytime property holds here as
well. In PQ-2D-SKY, just like SQ-DB-SKY, any tuple returned by
an issued query is a skyline tuple - leading to the anytime property.
Since PQ-DB-SKY explores one 2D subspace at a time, so long as
we process values of the other attributes (i.e., those not selected into
the 2D subspace) in their preferential order, all tuples discovered
by the algorithm at any time are on the eventual skyline - i.e., the
anytime property holds. Finally, in the mixed case, the initial call
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of RQ- or SQ-DB-SKY satisfies the anytime property, as shown
above. The subsequent call of (a small variation of) PQ-DB-SKY
satisfies the property as well, leading to the anytime property of
MQ-DB-SKY

7.2 Sky Band
We now consider an extension of the objective from discovering

the skyline tuples to top-h sky band tuples - i.e., those tuples that
are dominated by fewer than h other tuples in the database. One
can see that the top-1 sky band is exactly the traditional skyline.
Quite surprisingly, the simplest case discussed above - i.e., SQ-
DB - becomes the most difficult case for sky band discovery. In
the following discussions, we shall first illustrate how to extend
Algorithms RQ- and PQ-DB-SKY (and thereby MQ-DB-SKY) to
discover the top-h sky band, and then discuss SQ-DB.
Extending RQ-DB-SKY: The extension is enabled by the follow-
ing simple yet important observation: for any tuple t2 on the top-2
sky band but not on the skyline, there must exist a skyline tuple t1
such that when we consider the subspace dominated by t1 (and the
subset of the database in it), henceforth referred to as t1’s domina-
tion subspace, t2 becomes a skyline tuple. Given this observation,
discovering the top-2 sky band becomes straightforward: for each
skyline tuple t discovered by RQ-DB-SKY, we run RQ-DB-SKY
again, just this time on the domination subspace of t. It is possi-
ble to specify such a subspace through conjunctive queries because
RQ-DB supports two-ended ranges.

We now consider the discovery of top-h sky band. While this
seemingly requires us to consider any size-(h− 1) subset of tuples
on the top-(h−1) sky band, fortunately this is not the case in reality.
To understand why, consider a tuple t3 which is on the top-3 sky
band but not top-2 sky band. Interesting, t3 must be a skyline tuple
on the domination subspace of either a skyline tuple of the entire
database or a tuple on its top-2 sky band. For example, suppose that
t3 is dominated by two skyline tuples t and t′. Note that this means
t3 must be a skyline tuple in the domination subspace of t (and that
of t′ as well), simply because t′ is excluded from this subspace.
As such, the total number of times we have to run RQ-DB-SKY
to discover the top-h sky band is simply the number of tuples on
the top-(h − 1) sky band plus one (i.e., the original execution for
discovering the skyline).
Extending PQ-DB-SKY: For PQ-DB-SKY, the extension is indeed
straightforward - since the algorithm is eventually reduced to each
2D subspace (and the 1D queries issued within), the only difference
here for sky band discovery is the pruning rule: after issuing a 1D
query q which returns t, instead of eliminating the subspace with
x > t[x] and y > t[y] from consideration as in the skyline case, we
have to find the top-h sky band tuples matching q instead. This is
simple when the system returns top-k tuples where k ≥ h - as we
can simply take the top-h returned tuples of q and determine based
on the previously retrieved tuples which of the h tuples are indeed
on the top-h sky band, and then perform the pruning accordingly.
If k < h, however, we may have to issue the 0D (base) queries one
by one until finding all possible tuples matching q that are on the
top-h sky band. Once the pruning process is updated, the remaining
design remains unchanged.
Extending SQ-DB-SKY: The most difficult case, unfortunately,
happens for SQ-DB which only supports one-ended ranges. In-
deed, it might not be possible to discover even the top-2 sky band
without crawling the entire database. To understand why, con-
sider a simple case where the system features a top-1 interface (i.e.,
k = 1). Here we note a simple fact: any query consisting solely
of < or ≤ predicates will never return a non-skyline tuple t - be-
cause this query will always match the skyline tuple dominating t

and return it over t according to the system ranking function. This
essentially requires us to resort to “=” predicates (this is even as-
suming we know all the domain values) in order to discover the
top-h (h > 1) sky band. One can see that this easily reduces to
crawling the database in the worst-case scenario.

Having stated the negative result, in practice, it is still possible
to efficiently discover the top-h sky band for SQ-DB, especially
when k (as in the top-k interface offered by the hidden database) is
large. To understand why, note the following critical observation:
if among the (up to k) results returned by a query q, say SELECT
*, we can find a tuple t dominated by h − 1 other tuples, then we
can safely conclude that any tuple on the top-h sky band must not
be dominated by t. In other words, we can branch out from the
query according to t like what we did in SQ-DB-SKY for the top-1
tuple returned by q. We know that for any top-h sky band tuple
matching q, it must belong to at least one of the m branches, as
otherwise it must be dominated by t and therefore out of the top-h
sky band. Of course, as we drill further down into the tree, there
is a decreasing chance for a query to return a tuple dominated by
h − 1 others, simply because the appended < predicates narrow
the field to “highly ranked” tuples. Nonetheless, with a large k,
many of these deep queries may already return valid answers, al-
lowing us to safely stop exploring it further. In the unfortunate
case where a query still overflows - and we do not have any way
of further branching it out without losing the comprehensiveness of
top-h sky band discovery - then we have two choices: either to stop
exploring this query and accept partial discovery; or to crawl the
entire subspace corresponding to this query.

8. EXPERIMENTAL EVALUATION

8.1 Experimental Setup
In this section, we present the results of our experiments, all of

which were run on real-world data. Specifically, we started by test-
ing a real-world dataset we have already collected. We constructed
a top-k web search interface for it and then ran our algorithms
through the interface. Since we have full knowledge of the dataset
and control over factors such as database size, etc., this dataset en-
ables us to verify the correctness of our algorithms and test their
performance over varying characteristics of the database. Then, we
tested our algorithms live online over three real-world websites, in-
cluding the largest online diamond and flight search services in the
world, echoing the motivating examples discussed in Section 1.
Offline Dataset: The offline dataset we used is the flight on-time
database published by the US Department of Transportation (DOT).
It records, for all flights conducted by the 14 US carriers in Jan-
uary 2015,3, attributes such as scheduled and actual departure time,
taxiing time and other detailed delay metrics. The dataset has been
widely used by third-party websites to identify the on-time perfor-
mance of flights, routes, airports, airlines, etc.

The dataset consists of 457,013 tuples over 28 attributes, from
which 9 ordinal attributes were used as ranking attributes4: Dep-
Delay, Taxi-out, Taxi-in, Actual-elapsed-time, Air-time, Distance,
Delay-group-normal, Distance-group, ArrivalDelay. The domain
of the 9 ranking attributes range from 11 to 4,983. Two of the 9
attributes, Delay-group-normal and Distance-group, were already

3from http://www.transtats.bts.gov/DL_SelectFields.
asp?Table_ID=236&DB_Short_Name=On-Time
4The others, such as Flight Number, are considered filtering at-
tributes and not used in the experiments.
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discretized by DOT (i.e., “grouped”, according to the dataset de-
scription). Thus, we used them as PQ (point-query-predicate) at-
tributes by default. For a few tests which call for more PQ at-
tributes, we also consider four other derived attributes, Taxi-out
group, Taxi-in group, ArrivalDelay group, Air-Time group as po-
tential PQ. The other attributes were used as range-predicate at-
tributes - whether it is SQ or RQ depends on the specific test setup.

For all attributes, we defined the preferential order so that shorter
delay/duration ranks higher than longer values. For non-time at-
tributes, i.e., Distance and Distance-group, we assigned a higher
rank to longer distances than shorter ones, given that the same
amount of delay likely impacts short-distance flights more than
longer ones. We also tested the case where shorter distances are
ranked higher, and found little difference in the performance. To
construct the top-k interface, we also need to define a ranking func-
tion it uses. Here we simply used the SUM of attributes for which
smaller values are preferred MINUS the SUM of attributes for which
larger values are preferred.
Online Experiments: We conducted live experiments over three
real-world websites: Blue Nile (BN) diamonds, Google Flights
(GF), and Yahoo! Autos (YA).

Blue Nile (BN)5 is the largest online retailer of diamonds. At the
time of our tests, its database contained 209,666 tuples (diamonds)
over 6 attributes: Shape, Price, Carat, Cut, Color, Clarity, the last 5
of which have universally accepted preferential (global) orders, i.e.,
lower Price, higher Carat, more precise Cut, low trace of Color and
high Clarity. We used these 5 attributes to define skyline tuples.
BN offers two-ended range predicates (RQ) on all five attributes,
with the default ranking function being Price (low to high).

Google Flights (GF) is one of the largest flight search services
and offers an interface called QPX API6. We consider the sce-
nario of a traveler looking to get away with a one-way flight af-
ter a full day of work. We used three filtering attributes, Depar-
tureCity, ArrivalCity and DepartureDate, and four supported rank-
ing attributes: Stops, Price, ConnectionDuration, and Departure-
Time. Here the traveler likely prefers fewer Stops, lower Price,
shorter ConnectionDuration, and later DepartureTime. QPX API
supports SQ (i.e., single-ended ranges) on Stops, Price, Connec-
tionDuration, and RQ (i.e., two-ended) on DepartureTime. The
default ranking function used by GF is price (low to high).

Yahoo! Autos (YA)7 offers a popular search service for used cars.
In our experiments, we considered those listed for sale within 30
miles of New York City, totaling 125,149 cars. We considered
three ranking attributes Price (lower preferred), Mileage (lower
preferred), Year (higher preferred), all of which are supported as
two-ended ranges (RQ) by YA, and the ranking function of Price
(low to high).
Algorithms Evaluated: We tested the four main algorithms de-
scribed in the paper, SQ-, RQ-, PQ-, and MQ-DB-SKY. We also
compared their performance with a baseline technique of first crawl-
ing all tuples from the hidden web database using the state-of-the-
art crawling algorithm in [22], and then extracting the skyline tu-
ples locally. We refer to this technique as BASELINE.
Performance Measures: As we proved theoretically in the paper,
all algorithms guarantee complete skyline discovery. We confirmed
this in all experiments we ran offline (and have the ground truth for
verification). Since precision is not an issue, the key performance
measure becomes efficiency which, as we discussed earlier, is the
number of queries issued to the web database.

5http://www.bluenile.com/diamond-search
6https://developers.google.com/qpx-express/
7https://autos.yahoo.com/used-cars/

8.2 Experiments over Real-World Dataset
Interfaces with Range Predicates: We started with testing skyline
discovery through range-query interfaces, i.e., SQ and RQ, over the
DOT dataset. Figure 13 compares the query cost required for com-
plete skyline discovery by RQ-DB-SKY and BASELINE when k
(as in top-k offered by the web database) varies from 1 to 50. Note
that SQ-DB-SKY is not depicted here because the range-query-
based crawling in BASELINE requires two-ended range support.
One can observe from the figure that, while both algorithms benefit
from a larger k as we predicted, our RQ- algorithm outperforms the
baseline by orders of magnitude for all k values. Given the signif-
icant performance gap between BASELINE and our solutions, we
skip the BASELINE figure for most of the offline results, before
showing it again in the online live experiments.

Figure 14 depicts how the query cost of SQ- and RQ-DB-SKY
change when the database size n ranges from 50K to 400K. To test
databases with varying sizes, we drew uniform random samples
from the DOT dataset. The figure also shows the change of |S|, the
number of skyline tuples. One can see from the figure that RQ-DB-
SKY is more efficient than SQ- because it uses the more powerful,
two-ended, search interface. Perhaps more interestingly, neither
algorithm’s query cost depend much on n. Instead, they appear
more dependent on the number of skyline tuples |S| - consistent
with our theoretical analysis.

Figure 15 varies the number of attributes m. While both RQ-
and SQ- require more queries when there are more attributes, RQ-
again consistently outperforms SQ-DB-SKY. Note that the increase
on query cost is partially because of the rapid increase of the num-
ber of skyline tuples with dimensionality [5]. In any case, the query
cost for RQ- and SQ-DB-SKY remain small, compared to the the-
oretical bounds, even when the dimensionality reaches 10.
Interfaces with Point Predicates: In the next set of experiments,
we tested PQ-DB-SKY. Figure 16 shows how its query cost varies
with n and m. Interestingly, while the query cost barely changes
with n varying from 20,000 to 100,000, it increases significantly
when m changes from 3 to 5, just as predicted by our theoretical
analysis. In Figure 17, we further tested how the query cost changes
with varying domain sizes. To enable this test, for each given do-
main size (from v = 5 to 15), we first select all PQ attributes with
domain larger than v, and then remove from the domain of each
attribute all but v values (along with their associated tuples). Then,
we randomly selected 100,000 tuples from the remaining tuples as
our testing database. One can see from the result that, while larger
attribute domains do lead to a higher query cost, the increase on
query cost is not nearly as fast as the data space (which grows with
vm) - indicating the scalability of PQ-DB-SKY to larger domains.
Interfaces with Mixed Predicates: We next tested a more realis-
tic search interface that contains a mixture of range and point predi-
cates. We started with 3 RQ and 2 PQ predicates and evaluated how
the query cost varies with database size. Figure 18 shows that, as
expected, the number of tuples only have minimal impact on query
cost. We then tested how varying number of RQ and PQ attributes
affect our performance. The two lines in Figure 19 represent, re-
spectively, (1) 1 PQ attribute with the number of RQ attributes vary-
ing from 2 to 5, and (2) 1 RQ attribute with the number of PQ ones
from 2 to 5. One can observe from the figure that the impact on
query cost is much more pronounced on an increase of the number
of PQ attributes - consistent with earlier discussions in the paper.
Anytime Property of Skyline Discovery: Recall from §1 that all
algorithms in the paper feature the anytime property, i.e., one can
stop the algorithm execution at any time to return a subset of sky-
line tuples (over the entire database). Note that BASELINE does
not have this feature, as there is no way for it to determine if a tu-
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ple is truly on the skyline before the entire database is crawled.
Figures 20 and 21 trace the progress of SQ-, RQ- and PQ-DB-
SKY over 100,000 tuples (5 predicates in RQ-DB and 4 in PQ-DB
case) and demonstrate how the number of discovered skyline tuples
changes with query cost.

There are some interesting observations from the two figures. In
Figure 20, note that SQ-DB-SKY could find the first 16 skylines
without facing a skyline twice, leading to identical performance
with RQ- up to that point. Afterwards, however, it started getting
the same skyline tuple multiple times, leading to poorer perfor-
mance than RQ-DB-SKY when the number of discovered skyline
tuples reaches 23. In Figure 21, note that despite the limitations
of PQ, our algorithm managed to discover all skyline tuples with
fewer than 600 queries. The peak between the 8th and 9th tuples is
caused by queries “wasted” for crawling an area that did not contain
any skyline tuple.

8.3 Online Demonstration
As discussed earlier, we conducted live online experiments by

applying our final algorithm, MQ-DB-SKY, over three real-world
web databases, Blue Nile diamond search (BN), Google Flights
(GF), and Yahoo! Autos (YA), respectively.
Skyline Discovery over Blue Nile (BN): For BN, we discovered a
total of 2,149 tuples on the skyline. We compared the performance
of MQ-DB-SKY with BASELINE (k = 50), with the results de-
picted in Figure 22. Note that we stopped the execution of BASE-
LINE when its query cost reached 10,000 queries, at which time it
only managed to discover 1113 skyline tuples8. On the other hand,
our MQ- algorithm discovers the entire skyline with an average
query cost of only 3.5 per skyline tuple.

8Note that, as discussed earlier, BASELINE would not be able to
output these skyline tuples despite of having discovered them be-
cause BASELINE lacks the anytime property.

Skyline Discovery over Google Flights (GF): Our experiment
setup was as follows. We randomly chose a pair of airports from
the top-25 busiest airports in USA and a date between November 1
and 30, 2015, and sought to find all skyline flights on that day. We
repeated this process for 50 different pairs and report the average
query cost. The number of skyline flights varied between 4 to 11.
Figure 23 shows the results. Note that we did not compare against
BASELINE here because GF offers SQ only for attributes such as
Stops, Price, and ConnectionDuration, while BASELINE requires
two-ended range support for crawling. We verified the correctness
of the results by crawling all the flights for the same date and com-
paring the results. One can observe that our algorithm is highly
efficient even when k = 1. Specifically, it was able to discover
all skyline tuples with query cost below 50, which is the (free) rate
limit imposed per user account per day by GF (QPX API).
Skyline Discovery over Yahoo! Autos (YA): For YA, we discov-
ered a total of 1,601 skyline tuples. Figure 24 shows the perfor-
mance of our MQ- algorithm and the comparison with BASELINE.
Here k = 50. Once again, we had to discontinue BASELINE at
10,000 queries before it were able to complete crawling. On the
other hand, our MQ-DB-SKY algorithm managed to discover the
entire skyline with an average query cost below 2 per skyline tuple.

9. RELATED WORK
Crawling and Data Analytics over Hidden Databases: While
there has been a number of prior works on crawling, sampling, and
aggregate estimation over hidden web databases, there has not been
any study on the discovery of skyline tuples over hidden databases.
Crawling structured hidden web databases have been studied in
[18, 21, 22]. [7–9] describe efficient techniques to obtain random
samples from hidden web databases that can then be utilized to
perform aggregate estimation. Recent works such as [16, 24] pro-
pose more sophisticated sampling techniques that reduce variance
of aggregate estimation.
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Skyline Computation: Skyline operator was first described in [4]
and number of subsequent work have studied it from diverse con-
texts. [23] and [6] proposed efficient algorithms with the help of
indices and pre-sorting respectively. Online and progressive algo-
rithms were described in [13, 19]. The problem of skyline over
streams [14], partial orders [2], uncertain data [20] and groups [26]
have also been studied. [3, 17] study the problem of retrieving the
skyline from multiple web databases that expose a ranked list of
all tuples according to a pre-known ranking function. Such special
access might not always be available for a third party operator. Our
work is the first to study the problem of skyline computation over
structured hidden databases by using only the publicly available
access channels.
Applications of Skyline Tuples: Skyline tuples have a number
of applications in diverse contexts. A skyline tuple is not domi-
nated by another tuple while aK-Skyband tuple is dominated by at
most K − 1 tuples in the database. The top-k tuples of any mono-
tone aggregate function must belong to K-Skyband where k ≤ K
[11]. The numerous applications of top-k queries can be found
in [12]. Other applications of Skyline include nearest neighbor
search, answering the preference queries and finding the convex-
hull. Recently, the notion of reverse skyline [10], K-Dominating
andK-Dominant [25], and top-K representative skylines [15] have
been investigated with a number of applications including query re-
ranking and product design.

10. FINAL REMARKS
In this paper, we studied an important yet novel problem of sky-

line discovery over web databases with a top-k interface. We in-
troduced a taxonomy of the search interfaces offered by such a
database, according to whether single-ended range, two-ended range,
or point predicates are supported. We developed efficient skyline
discovery algorithms for each type and combine them to produce
a solution that works over a combination of such interfaces. We
developed rigorous theoretical analysis for the query cost, and also
conducted a comprehensive set of experiments on real-world datasets,
including a live online experiment on Google Flights, which demon-
strate the effectiveness of our proposed techniques.
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