
QR2: A Third-party Query Reranking Service Over
Web Databases

Yeshwanth D. Gunasekaran †, Abolfazl Asudeh ††, Sona Hasani †, Nan Zhang ‡, Ali Jaoua †‡, Gautam Das †

†University of Texas at Arlington, ††University of Michigan, ‡Pennsylvania State University, †‡Qatar University

Abstract—The ranked retrieval model has rapidly become the
de-facto way for search query processing in web databases.
Despite the extensive efforts on designing better ranking mech-
anisms, in practice, many such databases fail to address the
diverse and sometimes contradicting preferences of users. In this
paper, we present QR2, a third-party service that uses nothing
but the public search interface of a web database and enables the
on-the-fly processing of queries with any user-specified ranking
functions, no matter if the ranking function is supported by the
database or not.

I. INTRODUCTION

The ranked retrieval model [1], [2] has rapidly become the
de-facto way for query processing in web databases. Instead
of returning all of the search query matches, the ranked
retrieval model orders the matching tuples according to an
often proprietary ranking function, and returns the top-k [3].
This model is a natural fit for the web databases, as the short
attention span of web users demands the most desirable tuples
to be returned first and, in addition, achieving a short response
time requires to limit the length of returned results to a small
value. Nevertheless, this puts more responsibilities on the web
database designer, as the ranking mechanism must properly
capture the need of database users. In practice, web users
often have diverse and sometimes contradicting preferences on
numerous factors while many web databases may not design
the most effective ranking functions to reflect them. Examples
of such designs range from rental and real estate websites
such as Zillow1 to shopping websites such as Blue Nile2,
the largest diamonds online retailer, for ranking examples of
price per square feet for Zillow and the aggregation of depth
and table percent for Blue Nile. As a result, there is often a
significant gap, in terms of both design and diversity, between
the ranking function(s) supported by the web database and the
true preferences of the database users.

While ranked retrieval model [1], [2], top-k query process-
ing [3], [4], and building indices for them [5], [6] on one
side, and hidden web databases [7], [8], [9] on the other
side are well studied in the literature, research on ranked
retrieval model on web databases is limited to the two recent
papers [10], [11]. Similar to [11], [12] also proposes a third-
party service on web databases, however unlike [11], it focuses
on faceted search for mobile applications. In this paper, we

1www.zillow.com
2www.bluenile.com

demonstrate QR2, a working solution based on [11], a third-
party service that uses nothing but the public search interface
of a web database to enable the on-the-fly processing of
queries with any user-specified ranking functions. Proposed
algorithms in [11] enable the “Get-Next” primitive that provide
an incremental reranking of the results.
Problem definition: Consider a web database D with a top-k
interface and an arbitrary, unknown, system ranking function.
Given a user query q, a user-specified monotonic ranking
function f , and the top-h (h ≥ 0 can be greater than, equal to,
or smaller than k) tuples satisfying q according to f , discover
the No. (h + 1) tuple for q while minimizing the number of
queries issued to the database D.
System Overview: Proposed solutions address the problem in
two settings: (i) 1D, where the user-desired ranking function
is on a single attribute, and (ii) MD, the ranking of two or
more attributes. In this paper, we consider a linear combination
of the attribute values of each tuple as the score of it. The
tuples are ranked based on this score. The algorithms are
based on the principle of covering a region of interest specified
by the so-called rank-contour of the best-known solution.
Generally speaking, for each setting the following algorithms
are proposed3 (please refer to [11] for more details):

• (1D/MD)-BASELINE: In high-level, 1D and MD baseline
algorithms start by the broad queries that cover the search
space and, using the best-known tuple as the upper-bound,
keep narrowing the search space until the top tuple is found.
• (1D/MD)-BINARY: In certain cases, especially when the
user-specified ranking function is anti-correlated with the
ranking function of the web database, baseline algorithms
have a poor performance. Hence, rather than issuing the
query on the whole search space, (1D/MD)-BINARY applies
a binary search on the space to reduce its size by half at every
iteration. The binary algorithms, however, perform badly in
dense regions, i.e., when a large number of tuples are clustered
together within a small interval.
• (1D/MD)-RERANK: In order to resolve the problem of the
dense regions in (1D/MD)-BINARY algorithms, (1D/MD)-
RERANK applies the idea of on-the-fly indexing of these
regions. i.e., if the density of the region of interest is more
than a threshold, it directly gets the top tuple from an oracle
that indexes these regions as needed.

3For MD, MD-TA, an implementation of TA [3] using 1D-RERANK, is
also proposed.



Fig. 1: Architecture of QR2.

Web Databases: In this demonstration, we provide the rerank-
ing service on two major web databases from two different
areas, namely Blue Nile and Zillow. As a well-known real-
estate web database with millions of entities, Zillow allows
us to showcase the performance of the system on a large
database. Blue Nile, on the other hand, is the biggest online
diamond retailer. What makes Blue Nile interesting in this
demonstration is that diamonds have more ranking features
such as Carat, Depth, and Table that can show the perfor-
mance of the system in high dimensions.

II. QR2 SYSTEM

In this section we describe QR2’s system architecture, its
technical challenges, and the user interface.

A. Architecture

Fig. 1 shows the architecture of QR2. Web service is the
central component of the architecture, where the users connect
via Internet and select the data source. Once a user submits
a query along with a ranking preference, the server creates
a new session and processes the users request. The session
variable (user level cache) is used to store the tuples that are
already ”seen” while discovering the top-h of the given query,
in order to accelerate the query processing and subsequent get-
next operations. In addition to the query history, retained in
the session variable, 1D-RERANK and MD-RERANK apply
an on-the-fly indexing that detects the dense regions and pro-
actively crawls top ranked tuples to save on processing future
user queries. We use a MYSQL database to store the tuples
in the dense region.

B. Technical Challenges

In addition to the technical challenges addressed in [11],
the following are the main challenges we faced in practice,
together with their resolutions:
• General positioning assumption: a general assumption
in [11] is that no two tuples have the same values on a given
attribute. This assumption, however, may not hold in practice.
Especially when the number of tuples matching the predicate
t[Ai] = Vc is greater than system-k, the issued query to the
web database never underflows. To solve this, we implemented
the crawling algorithm proposed in [8]. QR2 calls this function
when the number of tuples matching a value Vc is greater than
system-k.

Fig. 2: Parallel processed queries per iteration for (a) three and (b)
two dimensions (BlueNile)

• Attributes with different cardinalities: Handling the at-
tributes with different domains is left as a part of ranking
function design in [11]. However, in practice, it does not
seem realistic to expect the users to take the burden. Thus, we
apply the min-max normalization of attributes values to resolve
this issue. Please note that obtaining the min and max values
on each attribute is simply doable using the 1D-RERANK
algorithm.
• Parallel processing: QR2, as a third party service, may have
different users issuing different queries at the same time; there-
fore, the sequential processing of queries may significantly
reduce the system performance. In addition to a non-sequential
processing of different queries, we apply parallel processing
while performing each query, in order to reduce the query
processing time. We note that this may, sometimes, increase
the number of queries issued to the web database. Specially,
the following parallel processings help reducing the effect of
the web database delay:

– In order to verify that the top discovered tuple is indeed
the true top one, we issue several queries, in parallel,
that cover the areas in which a tuple may dominate the
discovered tuple.

– In MD, after the initial get-next, in order to discover
subsequent tuple(s), the algorithm partitions the search
space on an attribute Ai and searches the two subspaces
independently. The subsequent tuple is the top tuple from
these two regions with the best score. Since the search in
subspaces is done independently, it is easily parallelable.

Fig. 2 shows the number of iterations where parallel pro-
cessing took place in an experiment on Blue Nile for both
two and three dimensional searches. One can see that in the
3D experiment (Fig. 2-a) more than 90% of queries were
submitted in parallel. Similarly, for the 2D search (Fig. 2-
b), only one out of 45 queries issued sequentially – i.e., more
than 97% percent of queries issued in parallel.
• Managing the dense region cache: As stated earlier, 1D-
RERANK and MD-RERANK apply on-the-fly indexing of the
dense regions to speed up the future processing. Being shared
between all the users, the index may become relatively large,
not to fit in the main memory. Thus, we use MYSQL to store
the dense regions. Additionally, before the system boots up
we verify the cache and update the changes from the web
database.

C. User Interface
QR2 has three main sections in its user interface, (i)

Filtering section, (ii) Ranking section, and (iii) Search results.



Fig. 3: User interface of QR2

Below is the description of these sections:
Filtering section: The filtering section is used for specifying
filtering predicates using a user-friendly web interface. This
interface is common in many web databases, especially in Blue
Nile and Zillow. For Blue Nile, the user can adjust the price,
carat, cut, color, and clarity sliders to search between a
particular area and also select nominal attributes like shape of
diamond. For Zillow, in addition to the location (e.g. the city
and zip code), as shown in Fig. 3(c) and (d), we include all
the filtering conditions, such as number of bedrooms and
price, in the filtering section.
Ranking section: For QR2, as a reranking service, the ranking
section is special. The ranking section should provide a user-
friendly way of identifying the user preference, even for the
users that do not have an understanding of the ranking function
notion. Obviously, expecting the user to compose a function
for the query is not realistic. Hence, one of the challenges
of this project was designing this section in a way that is
convenient for the ordinary users. After investigating different
alternatives, we designed the ranking section as follows:

• 1D: Similar to the order by clause in a SQL query, for one-
dimensional reranking, the user needs to simply specify the
ranking attribute, as well the ordering direction, i.e., ascending
or descending. As specified in Fig. 3(e), in addition to the
ranking attribute and the sorting direction, the user can specify
the number of results per page.
• MD: This component aims to provide a convenient way for
the ordinary users to specify their preference. To do so, after
normalizing the attribute domains, it uses a slider for each
of attributes chosen for ranking. For each attribute Ai, the
preference co-efficient, wi is specified by a slider value in the
range of [-1,1]. Based on the slider values, the user-specified

ranking function is
m∑
i=1

wi.Ai. Fig. 3(c) and Fig. 3(d) show two

example instances of the MD ranking section for Blue Nile
and Zillow, for the ranking functions price - 0.1 carat

- 0.5 depth and price- 0.3 square feet, respectively.
In addition to the slider, we also suggest a list of popular
functions for the user to choose from.

Search results and statistics: Once the query is issued, the
system processes and returns the table of top-k results (k is
specified by the user). Each row of the table shows the details
of a tuple while clicking on it opens the web database page of
the tuple. The get-next button allows the user to get the next
page of results. Along with the results, the user is also provided
with a small panel providing statistics such as query cost in
terms of the number of queries issued to the web database
and processing time. Fig. 4 shows a screen shot of results and
the statistics for a reranking query on Blue Nile. Similarly, for
Zillow and the ranking function Price - 0.3*Carat, the system
issued 27 queries to the Zillow server, which took 33 seconds.

III. DEMONSTRATION PLAN

In this section, we describe different scenarios that the user
can use to interact with QR2 and provide a few more specific
case studies for Blue Nile and Zillow.

A. System Implementation:

The QR2’s back-end is implemented using Python 3.5. To
build the web service and the web interface we used Flask
framework due to its minimal footprint, session management,
and database connection tools. We use Requests library for
query processing and Pandas library to save the query results
in data frames. Pandasql, a library which enables SQL queries



Fig. 4: Search results and statistics of QR2

over pandas data frames, is used to facilitate the query pro-
cessing phase. On the client side, Javascript, HTML, and CSS
are used to parse the results and show them to the user.

B. Demonstration Scenarios:

In order to study the performance of different algorithms,
we consider different combinations of (i) both web databases,
(ii) 1D and MD algorithms, (iii) filtering conditions, and
more importantly (iv) ranking functions that are independent,
positively correlated, and negatively correlated with the web
database’s system ranking function:
1D: The reranking, in this case, is on a single attribute. For
both Zillow and Blue Nile and for queries with different filter-
ing predicates, we will choose different attributes for ranking.
Also, to construct the rankings with different correlations with
the system ranking function, we will test the performance of
algorithms in both ascending and descending orders.
MD: The MD reranking is on more than one attribute,
where the user-specified ranking function is the dot product
of the slider values with the ranking attributes. In order to
construct queries with different correlations with the system
ranking function, we test different combinations of positive
and negative slider values on different numbers of attributes.
Especially, we choose Blue Nile for constructing ranking
functions with more than two ranking attributes. Fig. 3(b)
shows an example of such ranking functions (price - 0.1

carat - 0.5 depth).
On-the-fly indexing: Indexing the dense regions for fu-
ture is the main technique used in 1D-RERANK and MD-
RERANK to resolve the performance issues of both (1D/MD)-
BASELINE and (1D/MD)-BINARY. Showing the effective-
ness of this technique is part of the demonstration plan. To
do so, after issuing multiple queries, we will track the per-
formance of (1D/MD)-RERANK in terms of both processing
time and the number of submitted queries to the web database.
Best v.s. worse cases: Finally, we will demonstrate some
of the best and worst case scenarios to show efficiency and
limitations of the system. For example, we will show that
when a large number of tuples have the same value V on
an attribute Ai, the performance of the system may drop
significantly. That is because, in order to identify the next

top tuple, the system may first need to crawl all tuples where
t[Ai] = V . On the other hand, when the attribute values follow
a uniform distribution on the domain space, even the binary
search strategy performs well. Here are two of such functions:
• The function price + LengthWidthRatio is inefficient
to run on Blue Nile. While processing this query, QR2 needs
to crawl all the tuples with t[LengthWidthRatio] = 1. In
Blue Nile, when writing this paper, around 20% of the tuples
satisfy this predicate. The system, therefore, needs to crawl all
these tuples before returning the results. Note that thanks to
the on-the-flying indexing, (1D/MD)-RERANK will still have
a low amortized cost in these cases.
• The function price + squarefeet runs fast on Zillow.
The goal of this function is to find the houses with low
price and small square feet. The positive correlation between
attributes price and squarefeet, as well as the positive cor-
relation of this query with Zillow’s system ranking function,
makes the algorithms to finish quickly.

IV. SUMMARY

We proposed to demonstrate QR2, a third party service
that enables the on-the-fly processing of queries with any
ranking function defined by the user to a web database. Our
system uses nothing but the public search interface of the web
database and addresses a wide range of users preferences in
ranking the results, even if not supported by the database.

V. ACKNOWLEDGEMENT

This contribution was made possible by NPRP grant No.
07-794-1-145 from the Qatar National Research Fund (a
member of Qatar Foundation). Any findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors
listed above.

REFERENCES

[1] V. Hristidis and Y. Papakonstantinou, “Algorithms and applications for
answering ranked queries using ranked views,” VLDB Journal, 2004.

[2] J. Chomicki, “Preference formulas in relational queries,” TODS, 2003.
[3] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for

middleware,” Journal of Computer and System Sciences.
[4] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis, “Answering

top-k queries using views,” in VLDB, 2006.
[5] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R.

Smith, “The onion technique: indexing for linear optimization queries,”
in SIGMOD, 2000.

[6] A. Asudeh, A. Nazi, N. Zhang, and G. Das, “Efficient computation
of regret-ratio minimizing set: A compact maxima representative,” in
SIGMOD, 2017.

[7] J. Madhavan, D. Ko, Ł. Kot, V. Ganapathy, A. Rasmussen, and
A. Halevy, “Google’s deep web crawl,” VLDB, 2008.

[8] C. Sheng, N. Zhang, Y. Tao, and X. Jin, “Optimal algorithms for
crawling a hidden database in the web,” VLDB, 2012.

[9] Y. Lu, S. Thirumuruganathan, N. Zhang, and G. Das, “Hidden database
research and analytics (hydra) system.” IEEE Data Eng. Bull.

[10] A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das, “Discovering
the skyline of web databases,” VLDB, vol. 9, no. 7, pp. 600–611, 2016.

[11] A. Asudeh, N. Zhang, and G. Das, “Query reranking as a service,”
VLDB, vol. 9, no. 11, pp. 888–899, 2016.

[12] A. Nazi, A. Asudeh, N. Zhang, A. Jaoua, and G. Das, “Mobiface: A
mobile application for faceted search over hidden web databases,” ICCA,
2017.


