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Abstract

The extensive scope of large language models
(LLMs) across various domains underscores
the critical importance of responsibility in their
application, beyond natural language process-
ing. In particular, the randomized nature of
LLMs, coupled with inherent biases and his-
torical stereotypes in data, raises critical con-
cerns regarding reliability and equity. Address-
ing these challenges are necessary before using
LLMs for applications with societal impact.

Towards addressing this gap, we introduce
REQUAL-LM, a novel method for finding re-
liable and equitable LLM outputs through ag-
gregation. Specifically, we develop a Monte-
carlo method based on repeated sampling to
find a reliable output close to the mean of the
underlying distribution of possible outputs. We
formally define the terms such as reliability and
bias, and design an equity-aware aggregation to
minimize harmful bias while finding a highly
reliable output. REQUAL-LM does not require
specialized hardware, does not impose a signifi-
cant computing load, and uses LLMs as a black-
box. This design choice enables seamless scala-
bility alongside the rapid advancement of LLM
technologies. Our system does not require re-
training the LLMs, which makes it deployment-
ready and easy to adapt.

Our comprehensive experiments using various
tasks and datasets demonstrate that REQUAL-
LM effectively mitigates bias and selects a more
equitable response, specifically the outputs that
properly represents minority groups.

1 Introduction

In the ever-evolving realm of advanced technolo-
gies, Large Language Models (LLMs) have quickly
emerged as versatile tools, extending their influ-
ence far beyond the boundaries of natural language
processing (NLP). Many of the traditionally chal-
lenging tasks with decades of research in various

*This work was supported in part by NSF 2107290.

fields of computer science are finding more effec-
tive resolutions with the help of LLMs. Let us
consider Example 1 as a motivating example for
subset selection using LLM.

Example 1: (Part 1) Selecting a subset of can-
didates from a pool, based on a set of criteria
is common across multiple applications ranging
from journalism, to college admissions and job
hiring. For example, consider the HR depart-
ment of a sales company who wants to select a set
of candidates for the performance award based
on multiple criteria such as SALES and CUSTOMER-

SATISFACTION. Passing the performance informa-
tion of the employees, they can ask the LLM to
select the candidate set.

LLMs are sequential randomized approaches
based on estimations learned from large textual
datasets. In particular, based on the prompt and
the sequence of tokens generated so far, each word
(token) in the dictionary is assigned a probability.
Then, the next token is generated probabilistically
(proportional to the probabilities of the top-k or
top-p%) using the parameter temperature. Con-
sequently, the output may vary when the LLM is
queried again. As a result, a valid concern, particu-
larly for a decision maker, is whether they should
rely on the LLM’s output for taking action. In set-
tings similar to Example 1, the reliability question
is further significant, since a method to combine the
performance criteria has not been specified, while
small changes in the combination details may sig-
nificantly change the output (Guan et al., 2019).

Another challenge that makes a single query to
the LLMs unreliable arises for the symmetric set-
tings, where the ordering between the input does
not matter, i.e., shuffling the input should not im-
pact the output. For instance, in Example 1 the or-
dering based on which the employees are passed to
the LLM should not impact the output. Conversely,
LLMs receive an input as a (ordered) sequence. As



a result, as it was observed in (Gao et al., 2023),
the output of the LLMs for symmetric problems
vary when the input is shuffled. We also observed
the same behavior in our experiments on a subset
selection task, where the entities that are placed
at the beginning of the list had a higher chance of
being returned as the output.

To resolve these issues we introduce REQUAL-
LM that, instead of relying on a single query to an
LLM, follows a Monte-carlo method (Hammersley,
2013) based on repeated sampling. Particularly,
viewing each LLM output as a sample from the
underlying distribution of possible outputs, it iden-
tifies the centroid of a collection of samples as its
estimation of the mean of the distribution, and re-
turns the closest output to the centroid as the most
reliable one. To further clarify this, let us consider
Example 1 once again.

Example 1: (Part 2) Observing the dependency
of the LLM output with the input ordering, and to
possibly consider various combinations of perfor-
mance criteria, the HR department does not rely
on a single output of the LLM. Instead REQUAL-
LM enables issuing multiple queries to the LLM,
each time shuffling the list of the employees. It
then returns the “closest-to-centroid” of the ob-
tained samples as the most reliable output.

While being effective in practice, data-driven
technologies have been heavily criticized for ma-
chine bias (Angwin et al., 2022), and LLMs are not
an exception when it comes to bias. As a result,
another valid concern when using LLMs for deci-
sion making is neutrality: to ensure that impact of
historical biases and stereotypes are minimized and
that values such as diversity are promoted.

Example 1: (Part 3) The HR department
would likes to maximize diversity in the selected
awardees. In particular, they would like to prevent
selecting a male-only list of employees. REQUAL-
LM allows specifying two or more demographic
groups and it minimizes the output bias (mea-
sured as the cosine-similarity difference of its out-
put’s embedding with different groups’ represen-
tations).

LLMs are among the fast-growing technologies,
with new and advanced versions regularly emerg-
ing, while many of these systems are “black-box”.
Our system design is not dependent on a specific
LLM, which makes it a ready-to-apply wrapper

that works on top of any of the current and future
closed-source and open-source LLMs. REQUAL-
LM does not require pre-training or fine-tuning, is
task-agnostic, and can handle non-binary demo-
graphic groups.

In the following, first in § 2 we carefully dis-
cuss the problem setting, introduce notations, and
formally define terms such as reliability and bias.
Next, in § 3 we review the architecture of REQUAL-
LM, and develop our methodology for finding an
equitable centroid and return the closest output
to it, the one that is both equitable and reliable.
The experimental evaluations, related work, and
the discussions of the benefits and limitations of
REQUAL-LM are provided in § 4, § 5, § 6, and § 8,
respectively.

2 Preliminaries

– (Input) Task: We consider a task, such as subset
selection, sentence completion, assembling a team
of experts, etc., described in form of a prompt: a
natural language instruction.
– (Input) Demographic Groups: We assume the
existence of at least one sensitive attribute (e.g.,
sex) that specify the demographic groups G =
{g1, · · · ,gℓ} (e.g., {male, female}). The demo-
graphic groups are used to specify the output bias.
– LLM: We assume access to (at least) one LLM,
which is used for task answering. The LLM is ran-
domized, i.e., the tokens are sequentially drawn
based on the underlying distribution of the (top-k
or top-p%) token-probabilities. We treat the LLM
as a black-box oracle that upon querying gener-
ates an output based on the input prompt. Treat-
ing the LLM as black-box allows the adaptation
of REQUAL-LM both for closed-source and open-
source LLMs.
– Text Embedding: We rely on an external text em-
bedding model that transforms a text into an em-
bedding vector. Specifically, given a text Oi, it
generates the vector representation v⃗(Oi) = v⃗i =
⟨v1, v2, · · · , vd⟩. Our system, REQUAL-LM, is ag-
nostic to the choice (but limited to the performance)
of the embedding model, and can adapt any state-
of-the-art text embedding technique. Without loss
of generality, we use INSTRUCTOR – a method for
generating task-specific embeddings in accordance
with provided instructions (Su et al., 2023).

Given two text phrases Oi and Oj and their cor-
responding embeddings v⃗i and v⃗j , the similarity be-
tween Oi and Oj is measured as the cosine similar-



ity between their embeddings, i.e., Sim(Oi, Oj) =
cos∠(v⃗i, v⃗j). Similarly, the distance between Oi

and Oj is defined as ∆(Oi, Oj) = 1−Sim(v⃗i, v⃗j).

Definition 1 (Reliability). Given a prompt I , let
OI be the universe of possible-to-generate out-
puts for I . Furthermore, let ξ be the probability
distribution of outputs for I . That is, ∀O ∈ OI ,
Prξ(O) is the probability that O is generated for
I . Let µ⃗ξ be the mean of ξ in the embedding
space. Then the reliability of an output O ∈ OI

is defined as its similarity to µ⃗ξ. That is,

ρ(O) = Sim(v⃗(O), µ⃗ξ)

Let O ∈ OI be an output generated for
the prompt I comprising a sequence of |O| to-
kens ⟨tO1 , tO2 , · · · tO|O|⟩ sequentially generated by the
LLM. At each iteration i, let Pr(tOi ) be the prob-
ability of generating the token tOi . Then Prξ(O)
can be computed as the product of its token proba-
bilities. That is, Prξ(O) =

∏︁|O|
i=1 Pr(tOi ).

Definition 2 (Bias). Consider a set of demo-
graphic groups G = {g1, · · · ,gℓ} and their cor-
responding vector representation1 {g1⃗, · · · ,gℓ⃗}.
The bias of an output O for a prompt I is com-
puted as the maximum similarity disparity of the
demographic groups with O. Formally,

β(O) = max
gi,gj∈G

⃓⃓
Sim(v⃗(O),gi⃗)− Sim(v⃗(O),gj⃗)

⃓⃓
Bias is sometimes inherent to the task at hand

and is not harmful. For example, when the task
involves summarizing or rephrasing a paragraph
that is particularly written about a specific gender,
the resulting output tends to be naturally biased
towards that gender. We call this type of output bias
as the inevitable bias. Formally, we say a bias level
ε is inevitable if there is no valid output O ∈ OI

with a bias less than ε. In other words, for any
output O′ where β(O) < ε, we can say O′ /∈ OI .
Therefore, we define the inevitable bias as βn(I) =
minO∈O β(O). We consider any bias that is not
inevitable, discriminatory. Harmful stereotypes are
in this category. We call this type of output bias
as the harmful bias. Considering equity as our
objective in this paper, we would like to minimize
harmful bias in the outputs. The harmful bias of an
output can be computed by subtracting its bias from
the inevitable bias, i.e., βh(O) = β(O)− βn(I).

1Please refer to Appendix A for the details of obtaining
the vector representations for the demographic groups.

After defining the terms and notations, we are
able to formulate our problem: given a task pre-
sented in the form of a prompt I , and including the
demographic groups G, the objective is to identify
an output O ∈ OI , such that it maximizes ρ(O)
and minimizes βh(O).

3 Technical Details

3.1 Architecture Overview
Figure 1 shows the architecture of REQUAL-LM.
Following the Monte-carlo method described in
§ 3.2, the first step is to obtain a set of iid output
samples by issuing m independent queries to the
LLM. The results are subsequently fed into the text
embedding model, INSTRUCTOR, to obtain the vec-
tor representations {v⃗(O1), · · · v⃗(Om)}. Next, the
vector representations, as well as the vector rep-
resentations of the demographic groups, pass on
to the aggregation function (referred to as AVG in
the figure). The aggregation function generates the
vector representation that corresponds to the aver-
age of v⃗(O1) to v⃗(Om). Finally, a nearest neighbor
search is applied to the sample outputs to retrieve
the output that is most similar output to the average.

3.2 Methodology
Our approach for satisfying reliability and equity
in LLM outputs is a Monte-carlo method, which
relies on repeated sampling and the central limit
theorem (Durrett, 2010). Based on the law of large
numbers, iid samples can serve for approximating
their underlying distribution. That is because the
expected number of occurrences of each observa-
tion is proportional to its probability.

Recall that the outputs for a prompt I are gen-
erated based on the probability distribution ξ. Par-
ticularly, the probability that an output O ∈ OI is
sampled is Prξ(O). Therefore, the expected value
of v⃗(O) is equal to the mean of ξ in the embedding
space, µ⃗ξ . Now consider a set O = {O1 · · · , Om}
of iid output samples for the prompt I . Let v⃗c be
the sample mean of the representation vectors in
O. That is,

v⃗c =
1

m

m∑︂
i=1

v⃗(Oi) (1)

Similarly, let σ⃗ be the standard deviation of the
samples. Following the central limit theorem, v⃗c
follows N

(︁
µ⃗ξ,

σ⃗√
m

)︁
, the Normal distribution with

the mean µ⃗ξ and standard deviation σ⃗√
m

. For sim-
plicity, in the rest of the paper, we call v⃗c the cen-
troid of the output samples.



Task: Select the top-5 employee 
from the following list based on 
sales and customer satisfaction. 

cust. sat.salesname

4.24Alex

4.63.8Marry

…

…

1. Brian
2. Mary
3. …

1. David
2. Alex
3. …

1. Mary
2. Alex
3. …

O1

O2

Om

q1

q2

qm

v1v2 v3     …

v1v2 v3     …v1v2 v3     …

v1v2 v3     …

embedding1

embedding2

embeddingm

Nearest 
Neighbor

Demographic 
Groups

1. Brian
2. Mary
3. …

average
output

…

Figure 1: System Architecture of REQUAL-LM.

REQUAL-LM considers two approaches for spec-
ifying the value of m: (i) fixed budget and (ii)
fixed error. One can consider a fixed budget B
to ensure the sampling cost does not exceed B.
Specifically, if the cost of each query is c, then
m =

⌊︁
B
c

⌋︁
. Alternatively, when a flexible budget is

available, one can collect enough samples to bound
the confidence error for a specific confidence level
α (e.g., 95%). The confidence error e⃗ guarantees
Pr(|v⃗c − µ⃗ξ| > e⃗) ≤ 1− α. Following the central
limit theorem and using the Z-table, the confidence
error is computed as e⃗ = Z(1− α

2 )
σ⃗√
m

.

3.3 Equity-aware Aggregation

Using the centroid of sample outputs O as the es-
timation of µ⃗ξ, we can estimate the reliability of
each output O ∈ O as E

[︁
ρ(O)

]︁
= Sim(v⃗(O), v⃗c),

and identify the output with the maximum expected
reliability.

Figure 2 shows a toy T-SNE visualization of 9
sample outputs, while their centroid is marked with
a plus sign. The distance of the points from the
centroid show their expected reliability. In this
example, O3 is the most reliable output. In the
figure, the bias values are specified with a green-to-
red color coding, where green is the minimum bias.
From the figure, one can notice that O3, although
being the closest to the centroid, has a high bias. On
the other hand, O6 is both highly reliable and has a
low bias value; hence it would be a better output. In
order to achieve both objectives of high reliability
and low bias, REQUAL-LM instead develops an
equity-aware aggregation strategy.

Equation 1 computes the centroid as the average
over all of the sampled outputs. Instead, to achieve
equity, it is desirable to disregard the biased outputs
and instead compute the average of unbiased out-
puts, which we call equitable centroid or weighted
centroid. However, since the bias values are contin-
uous, REQUAL-LM assigns a weight to each sample
proportional to how biased it is. Particularly, focus-
ing on minimizing the harmful bias, the weight of

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

O1

O2

O3

O4
O5

O6

O7

O8

O9
Centroid

Figure 2: A toy t-SNE visualization of nine output sam-
ples, and their centroid. The closest (O3) and the second
closest (O6) points to the centroid are highlighted with
blue and green circles. The green-to-red color code
shows the bias values.

each sample Oi ∈ O is computed using the normal-
ized bias values βh(Oi)

maxmj=1 βh(Oj)
. Since the minimum

bias value over all possible outputs is unknown,
we use the minimum bias on the sampled outputs.
Formally, each weight wi is computed as

wi = 1−
β(Oi)−minmj=1 β(Oj)

maxmj=1 β(Oj)−minmj=1 β(Oj)
(2)

Finally, the equitable centroid is computed using
as the weighted average over O as

v⃗c =
1

m

m∑︂
i=1

wi v⃗(Oi) (3)

4 Experiments

In this section, we present our comprehensive ex-
perimental analysis on three separate tasks: Sub-
set Selection, Chat Completion, and Masked Lan-
guage Prediction. We investigate the capacity of
REQUAL-LM to mitigate the harmful bias and equi-
tably return a reliable result. We use reliability (ρ(.)
– Definition 1) and bias (β(.) – Definition 2) as the
main evaluation metrics. We aim to mitigate the
bias, specifically bias against the minority groups
which is female in our task. Therefore we do not
use the absolute value of β in the computations we



perform. Instead we use signed value of bias which
is quantified as the disparity between the similarity
of the output to the majority and minority as shown
in Definition 2. Therefore, it is acceptable to have
negative values on the bias axis.

We also provide a demonstration of measures
that have been previously studied to validate our
system and to give a thorough comparison with
the baseline models. These metrics are calculating
non-stereotypical and neutral responses for Masked
Language Prediction, as well as the female-to-male
ratio for Subset Selection results.

Baseline Models. We use 3 baselines to com-
pare our results with. The first baseline (referred
to as PAIR-RANKER) proposed by (Jiang et al.,
2023) is a pair-wise ranking model that uses a
cross-attention Transformer that can score a pair of
output candidates by encoding them with the input
text. The second baseline queries the LLM once
and returns its output. We refer to this baseline as
FIRST-RESPONSE. The third baseline (referred to
as DEBIASED-GPT). Given a task specific prompt,
DEBIASED-GPT tries to debias an output from a
set of responses. All of these models perform on a
collection of outputs generated by Llama2-70b.

We refer to the output of REQUAL-LM closest
to the weighted (equitable) centroid as WEIGHTED

OUTPUT, while the most similar output to the cen-
troid (the output maximum reliability) is called
UNWEIGHTED OUTPUT, and the one with minimum
bias is referred as MIN-BIAS OUTPUT.

4.1 Experiment setup

Environment: We performed our evaluations us-
ing two LLMs: Llama2, 70 billion parameters
(Llama2-70b), alongside GPT3.5-turbo APIs. All
of our experiments were conducted on the Google
Colab.

Default Values: To ensure obtaining relevant and
creatively diverse responses from one model in
every iteration, we randomly sample temperature
values from a uniform distribution in the range
[0.5, 1]. We modify the presence and frequency
penalty by drawing a random value in the range
[0.5, 2].

4.2 Datasets

Our experiments use two benchmark datasets, in-
cluding StereoSet (Nadeem et al., 2021) and
WinoBias (Zhao et al.), which have been utilized

original pool
1.Reilly, 2.Hailey, 3.Kelli, 4.Ivy, 5.Daisha, 6.Amanda, 7.Juanita,
8.Samantha, 9.Siena, 10.Brenna, 11.Natasha, 12.Dakota W, 13.Kitty,
14.Dakota B, 15.Harper, 16.Travis, 17.Ryan, 18.Grant, 19.Jesse , 20.Gar-
rett, 21.Austin, 22.Cole, 23.Devon, 24.William, 25.Kaden, 26.Bradley,
27.Cody, 28.George, 29.Sean, 30.Tanner

selected subsets
1. Kelli, 2. Grant, 3. Devon, 4. Natasha, 5. Harper.
1. Kelli, 2. Grant, 3. Cole, 4. Tanner, 5.Garrett.
1. Dakota B, 2. Kitty, 3. Amanda, 4. Bradley, 5. Grant.
1. Ivy, 2. Grant, 3. Samantha, 4. Kelli, 5. Dakota W.
1. Hailey, 2. Kelli, 3. Ivy, 4. Garrett, 5. Siena.

Table 1: A sample result illustrating a lower Jacard
similarity between the subset chosen from a candidate
pool after rearranging(shuffling).

before for detecting bias in Language Models. The
Forbes 2022 Billionaire2 dataset and the Stu-
dents3 dataset are used for subset selection (please
refer to Appendix B for more details). We col-
lect a random sample of size 200 records for each
experiment, and repeat the experiment 400 times.

4.3 Subset Selection

Previous studies have explored Subset Selection
for the purpose of identifying smaller datasets
for efficient training or fine-tuning (Wang et al.,
2023), (Killamsetty et al., 2023). However, our
work represents the first investigation into subset
selection as a task specifically tailored for Large
Language Models. We aim to select a group of
individuals from a pool of candidates given their
names and a combination of qualitative and numer-
ical data, with respect to abstract characteristics
such as "Intelligence" or "Success" that are not uni-
versally quantifiable. We use two datasets: Forbes
2022 Billionaire, and Students which contain can-
didates’ names, numeric data, and non-numerical
characteristics. In our experimental investigations,
we noted that a high impact of input order in the
output, as the entities at the top of the input had a
higher chance of appearing in the output. This has
been reflected in the high Jaccard similarity of the
outputs for the same input order (see the example
in Table 1). To address this issue, we implemented
a strategy of shuffling the data pool after every time
we prompt a model. We evaluate our results against
3 baselines, described previously.

We define a female-to-male ratio (rf/m) as a
measure of the average number of female candi-
dates to male candidates in our response samples.
We begin by explaining the results for Forbes
2022 Billionaire and Students on m = 5 sam-
ple outputs, shown in Figures 3a and 3b. In both

2Forbes-worlds-billionaires-list-2022
3Student-dataset

https://www.kaggle.com/datasets/prasertk/forbes-worlds-billionaires-list-2022
https://github.com/ShapeLab/ZooidsCompositePhysicalizations/blob/master/Zooid_Vis/bin/data/student-dataset.csv
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(a) Forbes 2022 Billionaire, Subset se-
lection task, Average over 5 outputs.
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(b) Students, Subset selection task, Av-
erage over 5 outputs.
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(c) WinoBias, Co-reference resolution
task, Average over 5 outputs.
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(d) WinoBias, Co-reference resolution
task, Average over 30 outputs.
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(e) StereoSet, Chat completion task, Av-
erage over 5 outputs.
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(f) StereoSet, Chat completion task, Av-
erage over 30 outputs.

Figure 3: Each figure demonstrates the bias distribution of final outputs on the specified task and dataset.
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(a) Forbes 2022 Billionaire
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(b) Students

Figure 4: Comparing the (gender) bias distributions on subset selection.
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(d) WinoBias

Figure 5: Reliability values, for the subset selection, chat completion, and co-reference resolution tasks.



figures, one can observe a clear shift of distribu-
tions between MIN-BIAS OUTPUT (yellow distribu-
tion) and UNWEIGHTED OUTPUT, which indicates the
magnitude of harmful bias in the red distribution.
Interestingly, in both cases, WEIGHTED OUTPUT was
able to resolve this bias and move the green distri-
bution aligned with the yellow. Also, as reflected in
Figure 5a and 5b, the reliability values of WEIGHTED

OUTPUT are close to UNWEIGHTED OUTPUT. In other
words, REQUAL-LM could find outputs that are
both equitable and highly reliable. This is also
reflected in the increased gender diversity of the
results, as the rf/m transitions from 0.66 for UN-

WEIGHTED OUTPUT to 1.05 for WEIGHTED OUTPUT for
the Students dataset. Similarly, in the Forbes
2022 Billionaire, the issue of under-representation
of the minority group (females) was successfully
addressed as the rf/m increased from 0.65 to 1.21.

4.3.1 Comparison against Baselines
Next, in order to compare our results with the base-
lines, we used Students and Forbes 2022 Bil-
lionaire datasets on subset selection with m = 5
samples. The results for the bias and the reliability
of the outputs are provided in Figures 4 and 5, re-
spectively. For both datasets, one can observe the
superiority of the output REQUAL-LM, WEIGHTED

OUTPUT, both on bias and also the reliability. Look-
ing at Figure 4b and Figure 4a, first, it is evident

that while the bias distribution of all baselines
are similar to UNWEIGHTED OUTPUT. In other words,
those were not successful in eliminating bias. On
the other hand, the bias distributions for WEIGHTED

OUTPUT (green lines) are shifted to left in both cases,
demonstrating its lower bias. Among the baselines,
DEBIASED-GPT demonstrated slightly lower bi-
ases than other two baselines, especially in the
Forbes 2022 Billionaire dataset. However, the
outputs of DEBIASED-GPT had a major issue: they
were not valid, i.e., those included names (as the
result of debiasing) that did not exist in the input.

Figure 5 shows the reliability values for each of
the 400 subset selection instances. To make the
plots more readable, we did not include the relia-
bility values for the DEBIASED-GPT and FIRST-
RESPONSE baselines. However, we confirm that
the reliability values for those were similar to PAIR-
RANKER. First, in both plots, it is evident that the
reliability value of UNWEIGHTED OUTPUT was close
to 1 in all cases. Second, one can confirm that the
reliability values for WEIGHTED OUTPUT were also
very close to UNWEIGHTED OUTPUT, demonstrating

that REQUAL-LM was able to reduce the bias at a
negligible reliability cost. On the other hand, the
reliability gap of PAIR-RANKER with UNWEIGHTED

OUTPUT was high (with a high fluctuation). We
would like to also point out to the large number of
calls to the LLM by PAIR-RANKER as it requires
O(m2) extra queries in its pairwise comparison
phase.

4.4 Masked Language Prediction
The Masked Language Prediction task evaluates
co-reference resolution on the WinoBias dataset.
Each sentence in WinoBias (Zhao et al.) con-
sists of two sentences merged together. The first
statement mentions a job, but the second sentence
uses a pronoun to refer to that job. The goal is
to predict the masked term in a way that reduces
harmful bias by eliminating existing trends that
associate a profession to a specific gender (Table
3). To address the Masked Language Prediction
task on WinoBias, we systematically filtered pro-
stereotype sentences related to each gender. This
involves categorizing sets of sentences containing
professions mostly associated with either female or
male genders into two different sets. Subsequently,
the model was asked to perform the masked lan-
guage prediction independently on each set of sen-
tences. The objective in that experiment is to pre-
dict the masked word in a manner that deviates
from stereotypical patterns.

Figure 3c and 3d illustrates the distribution of
bias scores for the WEIGHTED OUTPUT (green) and
UNWEIGHTED OUTPUT (red) across the whole dataset.
We see that the red distribution has a right-skewed
pattern, suggesting an imbalance in the centroid.
REQUAL-LM is capable of accurately identifying
an answer that is reliable and equitable. Specifi-
cally, when the majority vote exhibits stereotypical
patterns, our method chooses an anti-stereotype
or neutral response for the masked word (Table
2). To further validate the results, we count the
number of pro-stereotype, anti-stereotype, and neu-
tral responses. Our task is designed to prevent
responses from exhibiting bias toward either gen-
der. Improved performance is indicated by a rise in
responses that are either neutral or anti-stereotype.

As shown in Table 2, our method successfully
replaced the masked word using gender-neutral or
anti-stereotype terms in 71.7% of responses with 5
output samples and 68% of responses with 30 out-
put samples. The shift of the bias score distribution
to right from 5 to 30 outputs, as shown in Figure 3c



Metrics 5 outputs 30 outputs
weighted unweighted weighted unweighted

pro-stereotype 106 169 117 175
anti-stereotype 149 81 144 82

neutral 120 125 114 118

Table 2: Masked Language Prediction on WinoBias
w.r.t weighted average shows a significant improve-
ment in prediction anti-stereotype and gender-neutral
responses.

prompts weighted unweighted
[The CEO] ordered the cleaner out of the
room because <masked> wanted privacy. <she> <he>

The chief returned a book to the [librarian]
but <masked> complained of being late. <the patron> <she>

The carpenter admires the work of the [hair-
dresser] because <masked> appreciates tal-
ent.

<she> <he>

Table 3: Example output of REQUAL-LM on WinoBias.

and Figure 3d, indicates that the 5 outputs gener-
ally exhibit lower bias compared to the centroid
and minimum bias. However, having 30 outputs it
is still able to identify results with reduced harmful
bias while retaining inevitable bias. REQUAL-LM

successfully achieved the closest approximation to
a normal distribution of bias score (β) based on the
obtained results that are all biased. Simultaneously,
the results of our experiment results on (ρ) in Fig-
ure 5d show a distribution that closely mirrors those
of UNWEIGHTED OUTPUT, exhibiting higher values
compared to the baseline models. This is perceived
as a balanced, equitable and reliable preference for
both gender in the outcomes.

4.5 Chat Completion

In this task, we use StereoSet Intersen-
tences (Nadeem et al., 2021), focusing on the gen-
der category. Previous work by (Nadeem et al.,
2021) utilized Stereoset for multi-choice question
answering. In our approach, we diverge from con-
ventional methods by merging context sentences
with corresponding stereotype sentences to create
biased prompts, increasing the likelihood of gen-
erating biased model responses. Following the
persuasion techniques explored by (Zeng et al.,
2024), namely compensation and reciprocation, our
goal is to incentivize the model to produce outputs
based on these biased prompts. We then prompt
the model to complete the generated sentence in
exchange for rewards, with penalties for refusal.

Figures 3e, 3f and 6 illustrate the bias score dis-
tribution of the Chat completion results for UN-

WEIGHTED OUTPUT (red), WEIGHTED OUTPUT (green),
and MIN-BIAS OUTPUT (yellow).

In both figures, one can notice that the bias gap
between UNWEIGHTED OUTPUT and MIN-BIAS OUTPUT
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Figure 6: Illustration of the performance of REQUAL-
LM in Chat completion task on StereoSet targeting
Race as the sensitive attribute over 30 outputs.

is already negligible. Still for both cases of 5 and
30 samples, WEIGHTED OUTPUT could reduce the
bias to almost the same distribution as of MIN-BIAS

OUTPUT. Meanwhile, WEIGHTED OUTPUT displays
higher values of ρ compared to both MIN-BIAS OUT-

PUT and PAIR-RANKER, as illustrated in Figure 5c,
enhancing the reliability of our results over the
baseline methods.

Last but not least, our experiments (Figure 6)
on the non-binary sensitive attribute Race within
StereoSet also reveal a consistent pattern, which
illustrates the extension of REQUAL-LM for set-
tings with multiple demographic groups.

5 Related Work

Language models have gained popularity due to
their proficiency at comprehending human lan-
guage. Nevertheless, prior research has examined
numerous limitations of these models, particularly
in terms of their reliability and fairness. Various
techniques have been previously presented to miti-
gate bias in language models while enhancing their
reliability. In this literature, drop out is a regu-
larization technique adopted to mitigate gender
bias (Meade et al., 2022; Webster et al., 2020).
The interruption generated by this strategy restricts
the model from acquiring the ability to detect the
connections between words that ultimately builds
stereotypes. Some studies propose reducing bias
in pre-trained models and enhancing dependabil-
ity through diverse data augmentation. This in-
volves incorporating data points that cover various
demographics (Zmigrod et al., 2019; Dinan et al.,
2020; Barikeri et al., 2021). Additionally, there are
studies that focus on mitigating bias in word repre-
sentation using post-processing techniques (Boluk-
basi et al., 2016), as well as in sentence represen-
tation (May et al., 2019) and context representa-



tions (Caliskan et al., 2017; Kaneko and Bollegala,
2021). Nevertheless, certain algorithms necessitate
the process of retraining the model (Bordia and
Bowman, 2019) or finetuning (Gira et al., 2022).

Weighted sampling to improve fairness in classi-
fication tasks has been studied before (Ueda et al.,
2023) but, to the best of our knowledge, this paper
is the first to use repeated sampling for fairness
(and reliability) in the context of LLMs. Perhaps
the most similar paper to our work is (Jiang et al.,
2023) (called PAIR-RANKER in our experiments),
that uses pairwise comparison between the LLM
outputs to rank them. While PAIR-RANKER also
takes as the input a set of LLM outputs and rank
them, it has different goals and follows different
technical approaches from REQUAL-LM. Also,
PAIR-RANKER has a significantly higher query
cost, compared to REQUAL-LM: PAIR-RANKER

issues an extra O(m2) calls to the LLM to rank
the outputs, while REQUAL-LM does not issue any
additional calls other the m calls to collect the out-
puts.

6 Benefits

In the following, we list some of the advantages of
REQUAL-LM, compared to the existing approaches.
– A wide range of task: LLMs continuously find new
applications in solving interesting problems across
different domains. REQUAL-LM is not limited to
specific tasks (such as sentence completion). It
naturally fits to any task specified as a prompt and
its output can be evaluated in the embedding space
based on Definitions 1 and 2.
– Agnostic to the choice of LLM Model and the text
embedder: REQUAL-LM treats the LLM model as
black-box. As a result, any state-of-the-art mod-
els can be readily adapted by it. In addition, our
methodology can accommodate any text embed-
ding model that effectively captures the semantic
subtleties of bias. Furthermore, instead of rely-
ing to one LLM, one can use multiple LLMs for
obtaining the output samples.
– No need for pre-training or fine-tuning: REQUAL-
LM is a reliability and equity wrapper that can be
applied readily on top of any LLM.
– Optimizing both reliability and equity: Given the
randomized nature of LLMs alongside historical
biases in data, equitably finding a reliable output
for the task at hand is critical. Satisfying this re-
quirement make REQUAL-LM a good candidate, at
least for the applications with societal impact.

– Not limited to specific and binary demographic
groups: While existing work in NLP has been
mostly focused on gender bias and binary sensitive
attributes, REQUAL-LM is designed to work both
in binary and non-binary settings, for a wide range
of demographic groups that could be specified in
the text-embedding space.

– Distinguishes between harmful and inevitable
bias: As explained earlier, some level of bias may
be inevitable for a given task, such as summariz-
ing a paragraph about African-American history.
While approaches such as output debiasing can-
not identify such bias, REQUAL-LM distinguishes
between those cases and the harmful bias.

– Always generates valid results: Assuming that the
LLM generates valid outputs for a given prompt,
REQUAL-LM always generates a valid result. We
would like to underscore that, as we observed in
our experiments, the output debiasing approaches
may generate invalid results, particularly for the
tasks beyond NLP. For example, let us consider
Example 1 once again, where the objective is to
select a subset of candidates from a pool. The gen-
erated output for this task is a set of names. Now
suppose all those names are male. Taking this list
as the input, a debiasing approach would replace
some of names with female names. However, (i)
these names are not likely to exist in the candidate
pool and (ii) even if those by chance exist, their
selection is not merit-based.

7 Conclusion

Large language models exhibit remarkable versa-
tility due to their ability to understand human lan-
guage and generate content across various domains,
languages, and tasks. However, responsible usage
of LLMs calls to first understand and minimize the
potential harms of these technologies. Towards
achieving this goal, this paper introduces a novel
sampling-based approach for obtaining reliable and
unbiased LLM outputs through aggregation. Our
design choice to consider the LLM as black-box,
facilitates scaling with the fast growing LLM tech-
nologies. Our system does not require retraining
the LLMs, making it readily deployable and adapt-
able with ease. In this paper, we optimize for equity,
measured in the embedding space using cosine sim-
ilarity with the vector of demographic groups. Ex-
tending this objective to other measures of fairness
in an interesting direction for future work.



8 Limitations

Having mentioned some of it benefits, we now
discuss some of the limitations of REQUAL-LM.

It is important to underscore that our approach
avoids modifying the internal configurations of the
models it uses. If the Language Models and text
embedding model contain inherent biases, these
biases will impact our results. Our approach does
not claim to eliminate the inherent biases present
in Language Models. Even though using multiple
LLMs, instead of one, for collecting the sample
output can help to reduce the impact of inherent
bias in each of the LLMs.

Our approach heavily depends on the effective-
ness of the embedding vectors produced by (Su
et al., 2023) and their ability to capture the subtle
semantic biases present in phrases. If the text em-
bedding models are unable to accurately capture
bias, it could negatively impact the performance of
our strategy. In the future work we plan to exam-
ine the effectiveness of different text embedding
models and evaluate their performance.

Additionally, although our approach does not
require knowledge of sensitive attributes, it does re-
quire an understanding of minority groups in order
to correctly determine weighted averages.

Furthermore, beyond human evaluation, we lack
a quantitative metric to assess the validity of the
final output. We make the assumption that the LLM
generates a valid output for the given prompt. As a
result, the relevance of our final output is limited
to the capability of its LLM. Filling this gap is
an interesting research question we consider for
our future work. Furthermore, our objective is to
broaden the application of our approach to include
other sensitive attributes and demographic groups.

*Ethical Statement

This work fully complies with the ACL Ethics Pol-
icy. To the best of our knowledge, there are no
ethical issues in this paper. As previously high-
lighted in the Limitations section, we do not claim
that we can entirely resolve the problem of bias in
Language Models. Instead, we offer a framework
that finds an equitable and reliable output from a
collection of valid outputs for a task. None of our
experimental evaluations utilize sensitive attributes
as input data. We rely primarily on the Language
Models and Text Embeddings’ prior knowledge
to capture the semantics of the sensitive attributes.
In cases when the embedding vectors do not accu-

rately reveal the bias, or when the bias is evenly
distributed across various values of the targeted sen-
sitive attribute, the bias will reflect in our results.
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Appendix

A Demographic Groups Representation

Obtaining the vector representation for the demo-
graphic groups (such as male and female) in the
same embedding space as of the textual outputs
is challenging. That mainly is because the text
embedding model provides representations for the
sentences that encapsulate the semantic of human
language, while each demographic group is a word
representing an abstract concept.

Interestingly, a sampling-based approach can
also be developed for acquiring the sentence-level
vector representation for each group g ∈ G. Partic-
ularly, one can generate a set of simple sentences
that are heavily associated with g, while contain-
ing a minimal additional information (e.g., “She
is here”, “He is here”, “He is a man”, “She is a
woman”, etc.). Then, the embedding for each gener-
ated sentence can be viewed as a sample around g⃗,
the vector representation of g, in which additional
information introduces a noise to the vector. As a
result, the average value over the sample provides
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an estimation of g⃗. (May et al., 2019) applies this
technique by utilizing simple sentences constructed
from words and terms provided by (Caliskan et al.,
2017) for obtaining the sentence-level embeddings
for gender. REQUAL-LM also applies the same ap-
proach using INSTRUCTOR as the embedding model.
For each demographic group g, it relies on a prede-
termined collection of sentences from (May et al.,
2019).

B Datasets Description

The following datasets have been used in our ex-
periments.

• StereoSet (Nadeem et al., 2021): this dataset
consists of 17000 sentences that measure
model preferences across gender, race, reli-
gion, and profession. Each contextual sen-
tence is associated with three corresponding
sentences, categorized as "stereotype", "anti-
stereotype", and "unrelated".

• WinoBias (Zhao et al.)1: is a dataset for coref-
erence resolution focusing on gender bias.
It contains Winograd-schema-style sentences
with entities corresponding to people identi-
fied by their occupation chosen from a collec-
tion of 40 jobs compiled by the US Depart-
ment of Labor.

• Forbes 2022 Billionaire2: is a list of 2669
billionaires with 22 attributes such as source
of income, country of residence, net worth,
etc.

• Students3: consists of 308 students with in-
formation such as demographics, academic
performance, and their corresponding geo-
graphic details.

1We use the Type-1 sentences of this dataset
2forbes-worlds-billionaires-list-2022
3student-dataset

https://www.kaggle.com/datasets/prasertk/forbes-worlds-billionaires-list-2022
https://github.com/ShapeLab/ZooidsCompositePhysicalizations/blob/master/Zooid_Vis/bin/data/student-dataset.csv
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