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ABSTRACT
Finding the maxima of a database based on a user preference, es-
pecially when the ranking function is a linear combination of the
attributes, has been the subject of recent research. A critical ob-
servation is that the convex hull is the subset of tuples that can be
used to find the maxima of any linear function. However, in real
world applications the convex hull can be a significant portion of
the database, and thus its performance is greatly reduced. Thus,
computing a subset limited to r tuples that minimizes the regret ra-
tio (a measure of the user’s dissatisfaction with the result from the
limited set versus the one from the entire database) is of interest.

In this paper, we make several fundamental theoretical as well
as practical advances in developing such a compact set. In the case
of two dimensional databases, we develop an optimal linearithmic
time algorithm by leveraging the ordering of skyline tuples. In
the case of higher dimensions, the problem is known to be NP-
complete. As one of our main results of this paper, we develop an
approximation algorithm that runs in linearithmic time and guar-
antees a regret ratio, within any arbitrarily small user-controllable
distance from the optimal regret ratio. The comprehensive set of
experiments on both synthetic and publicly available real datasets
confirm the efficiency, quality of output, and scalability of our pro-
posed algorithms.

1. INTRODUCTION

1.1 Motivation
A maxima query returns a tuple from a large database of n tuples,

preferentially selected and returned according to a ranking/utility
function that is used to model user preferences. Such queries are
very useful in application domains where end-users are interested
in multi-criteria decision making, and would like to see the most
important tuples from the potentially huge answer space. Thus,
much recent studies, including online, view-based and index-based
techniques such as [5, 9–11, 15] have focused on this direction.

In many applications, especially in databases containing numeric
attributes, the ranking function used to model user preferences is
expressed in the form of a linear combination of query attributes
– i.e.

∑
wiAi. Finding the top houses in a real estate database

based on a linear combination of some criteria such as price and
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floor area [29], or finding the best NBA player based on a linear
combination of his performance criteria such as points and assists,
are a few examples of this class of ranking function.

A critical observation is that if the tuples are viewed as points
in a high-dimensional space, the convex hull is the subset of points
that can be used to find the maxima for any linear ranking func-
tion [5,8]. However, in some real world applications such a convex
hull can be overwhelmingly large, and therefore its performance is
greatly reduced because many tuples have to be examined during
query processing [15]. The size of such a set is highly correlated
with the number of attributes, i.e., the number of convex hull tuples
radically increases with the number of attributes/dimensions. Even
in the case of two-dimensional database, the number of convex hull
tuples might also be large. As has been studied in [13], the “cur-
vature” of the shape of a region within which the database tuples
are distributed greatly affects the number of convex hull tuples. As
the curvature increases the number of convex hull tuples increases.
For example, when n points are uniformly distributed inside a con-
vex polygon with k sides, the expected number of the convex hull
points is O(k logn), while this value is O(n

1
3 ) when points are

uniformly distributed inside a circle.
Consequently, it is of interest to develop a set limited to r << n

tuples (where r is an input parameter). Given such a reduced set,
for a given ranking function, we can identify the maximum of the
reduced set and return it as the query answer. One can observe
a tradeoff between the size of the set and the accuracy of query
answers (i.e., how the result might differ from the real maximum
over the entire table). The task then is to design the most accurate
set, i.e., the subset of r tuples for which the “user dissatisfaction”
over all possible ranking functions is minimized.

Prior works on convex hull discovery in high-dimensions, such
as [1,16], focus on designing efficient approximate algorithms with
small approximate ratios. Thus, their goal is to discover a set that is
as similar to the real convex hull as possible, rather than resolving
the problem of a large convex hull, and usually find a super-set of
the convex hull. There has also been work, such as [4,26], on reduc-
ing the skyline [2] (the maxima representative that applies to more
general monotonic ranking functions rather than just linear func-
tions) size. However, their objective in ranking the skyline tuples
is not minimizing the user dissatisfaction on maxima queries. For
example, [4] relaxes the notion of domination to “k−domination”
in order to increase the chance domination and reduce the skyline.

The problem investigated in our paper, which we call the Regret-
ratio Minimizing Set (RRMS) problem, has been studied in prior
papers. Nanongkai et. al. [22] introduced the notion of regret ra-
tio in order to measure the user dissatisfaction with the top result
returned by the representative set. Given a set of r tuples and a spe-
cific ranking/utility function, they define regret ratio as the ratio of
the difference between the scores of the top tuple in the set and the



top tuple in the entire database, divided by score of the top tuple in
the entire database. Given a set (or space) of ranking functions, the
maximum regret ratio is the regret ratio with the largest value. The
RRMS problem seeks to find the subset of r tuples that minimizes
the maximum regret ratio. It is known that for arbitrary dimensions,
the problem is NP-hard [6]. The two state of art algorithms for ar-
bitrary dimensions are (a) a greedy heuristic with unproven theo-
retical guarantees, which is based on executing O(nr) linear pro-
grams in total, and (b) a simple space discretization approach that
produces an approximate regret ratio that is within a fixed distance
from the optimal and has the time complexity of O(nd + r) [22].
Further investigation on this problem has also been done by [6] for
the special case of two dimensions (where the problem is not NP-
hard), and a quadratic (O(n2r)) algorithm to find the optimal set
has been developed, that leverages the notions of geometric duality
and line arrangements.

1.2 Technical Highlights
In this paper, we make several fundamental theoretical as well as

practical advances for the RRMS problem, in both two-dimensional
and high-dimensional databases.

In the case of two-dimensional databases, we develop an inno-
vative dynamic programming algorithm to find the optimal set by
leveraging the total order property of the tuples that occur in the
skyline of the database. Our two-dimensional exact polynomial
time algorithm (2D-RRMS) runs in O(rs log s log c) time, where
s and c are the number of skyline and convex hull tuples in the
database respectively. This is a huge improvement over theO(n2r)
algorithm proposed by [6], which is based on the notions of geo-
metric duality and line arrangements.

Next, as perhaps one of the major results of this paper, we de-
velop an approximation algorithm (HD-RRMS) that guarantees a
regret ratio that is within a small user-controllable distance from
the optimal regret ratio. This algorithm is based on several inno-
vative ideas. First, we model the problem conceptually as an in-
finitely large matrix min-max problem [24], where the rows are the
tuples and the (infinitely many) columns correspond to each pos-
sible ranking function. Given an user controlled discretization pa-
rameter, we discretize the ranking functions space into a bounded
number of functions (based on the control parameter) in the polar
system. We then take the advantage of the linear-size discretized
problem space in order to find the optimal value for the discretized
matrix min-max problem in O(n logn) time, which is an approx-
imate solution for the original problem. To do so, we convert the
problem into linear number of fixed-size instances of the set-cover
problem [12]. Thus, our eventual algorithm is able to guarantee
a regret ratio that is within a user-controllable distance from the
optimal regret ratio. The HD-RRMS algorithm is a theoretical al-
gorithm, because although it runs in linearithmic time (assuming
that the dimensions of the space and the user controlled parameter
are both constants), the proportionality constant in the running time
is large (exponentially dependent on the number of dimensions),
mainly due to the large size of the set cover instances. Therefore,
we make an important practical adaptation to HD-RRMS, by re-
placing subroutine calls to an exact set-cover algorithm with calls
to the well-known greedy approximate set-cover algorithm [7].

Beside the theoretical analysis, we also provide extensive experi-
mental results over three publicly available real-world datasets, i.e.,
an Airline dataset, Department of Transportation (DOT), and Bas-
ketball dataset (NBA), with sizes up to several million records. We
also used synthetic datasets to evaluate the performance of the pro-
posed algorithms in the presence of different correlation models,
i.e., correlated, independent, and anti-correlated. All experimental
results confirm that our algorithms not only are more efficient than

the existing solutions, and are scalable, but also produce represen-
tative sets with smaller regret ratios.

1.3 Summary of Contributions
In summary, we make the following main contributions:
• For the two-dimensional scenario we propose a linearithmic time

dynamic programming algorithm 2D-RRMS which is much faster
than the existing quadratic time algorithm.
• We develop HD-RRMS, an algorithm for higher dimensions that

can approximate the regret ratio to within a user controlled pa-
rameter. This algorithm discretizes the ranking function space
and models the problem as a discrete matrix min-max problem.
Although the HD-RRMS algorithm is linearithmic in theory, it
may become inefficient in practice. We propose how to make
the algorithm practical.
• We perform a comprehensive set of experiments on synthetic

(with different correlation models) and real datasets of size up
to several million records that demonstrate the efficiency, scala-
bility, and effectiveness of our algorithms.

2. PRELIMINARIES

Database Model: Consider a database, D with m numeric at-
tributesA = {A1, . . . , Am}. Let Dom(Ai) ≥ 0 be the domain of
attribute Ai. The database may also have non-numeric attributes,
but since they are usually not part of any ranking function, they are
not considered in our context. We assume there are n distinct tu-
ples in the database. For a tuple t ∈ D, we use t[Ai] ∈ Dom(Ai)
to denote the non-NULL value of attribute Ai in t.

Consider a ranking function F (·) : D → IR that assigns a score
to each tuple t in the database. The ranking function sorts the tuples
based on the scores assigned to them. Given such a user specified
function, the database determines the tuple with maximum score
that should be returned. In this paper, we assume a tuple t ∈ D
outranks a tuple t′ ∈ D based on F , if F (t) > F (t′). Furthermore,
we follow the existing work [6, 22] and focus on the popular-in-
practice [5, 29] linear ranking functions, defined by Equation 1.

F (t) =

m∑
i=1

wi · t[Ai] (1)

wi ∈ [0, 1], in Equation 1, is the weight of the attribute Ai. Please
note that since we are only restricted to positive weights, everything
is confined to the first quadrant.
We also define the contour of F as the sets of m-attribute-value
combinations that have the same score based on F .

Convex hull: The convex hull is the boundary of the smallest con-
vex region containing all the tuples inD and is formed by the subset
of tuples on the boundary [5]. In this paper, we denote the convex
hull by C. As proved in [8], C is the minimal subset that can be
used to find the maxima for any linear ranking function1. Formally
(considering F as the set of all possible linear ranking functions):

(i) ∀F ∈ F , ∃t ∈ C s.t. ∀t′ ∈ D,F (t) ≥ F (t′) and

(ii) ∀t ∈ C, ∃F ∈ F s.t. ∀t′ ∈ C\{t}, F (t) > F (t′) (2)

Depending on the number of tuples in D, and their distributions,
size of the convex hull, |C| = c, may be large. As discussed in
§ 1, even in a two-dimensional database a large number of tuples,

1The maxima representative of more general monotonic ranking functions
is skyline [2]. Skyline is the set of non-dominated tuples in the database,
where a tuple t dominates a tuple t′ (t � t′), iff (i)∀A ∈ A, t[A] ≥ t′[A]
and (ii) ∃A ∈ A such that t[A] > t′[A].
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Figure 1: Impact of the number
of attributes in C

Figure 2: Contour of the ranking
functions in a 2D example.

O(n
1
3 ), may place in the convex hull [13]. If the convex hull is

small, it can be pre-computed, and can then be extremely useful in
efficiently finding the maximum scoring tuple of any user-specified
ranking function, since a linear scan that examines c tuples will
suffice rather than having to examine all n database tuples. The
problem with a large C is that the scan becomes slow. In high di-
mensional databases, the problem is even worse because when m
increases, more and more tuples belong to C, which results in an
exponential growth in the size of the convex hull [27]. Obviously,
when C is a large portion ofD, it loses its power as a representative.
Figure 1 shows how c grows with number of attributes, m, when
tuples are uniformly distributed.

Performance Measure: Based on Equation 2, every tuple t in C
is the maximum of at least one linear ranking function. Let Ft be
the set of linear ranking functions for which t is the maximum. If
a tuple t is removed from C, the next “best” alternative (the tuple
that outranks all the tuples in C\t) is returned as the maximum of a
ranking function F ∈ Ft.

Consider the example provided in Figure 2, where C = {t1, t2,
t3, t4} is the convex hull. The lines between l1 clockwise to l3
represent Ft3 . If we remove t3 then t2 will be returned as the max-
imum for the ranking functions from l1 clockwise to l2, while t4
will be returned for the ones from l3 anti-clockwise to l2. One may
notice from the figure that as the function gets closer to l2 (from
either sides), the difference between Ft3 and the best alternative
increases, i.e. the maximum score difference happens exactly for
the ranking function represented by l2.

In this paper, we use the maximum regret-ratio defined by [22] in
order to measure the error of removing a tuple t from a databaseD,
formally defined by Equation 32 Intuitively, the maximum regret-
ratio is the worst-case score (ratio) difference between the true
maximum tuple and the one in the compact set.

∀t ∈ D, E(t,D) = sup
∀F∈Ft

min∀t′∈D\{t}(F (t)− F (t′))

F (t)
(3)

The regret-ratio can be extended to measure the error of remov-
ing a set of tuples T ⊂ D. Specifically, this error is the maximum
score-difference ratio of each tuple in T and its best alternative in
the remaining convex hull, formally defined by Equation 4.

∀T ⊂ D, E(T,D) = max
∀t∈T

( sup
∀F∈Ft

min∀t′∈D\{T}(F (t)− F (t′))

F (t)
)

(4)

In the rest of the paper, for simplicity we use ET as E(T,D).

2.1 Problem Definition
In this paper, we consider the problem of Regret-ratio Minimiz-

ing Set, i.e., given a databaseD and an integer r ≥ 1, our objective
is to find a set of at most r tuples such that the regret-ratio is mini-
mum. This problem is formally defined as follows:
2We use the notation E(T,D) to show rrD(D\T,L) in [22].

REGRET-RATIO MINIMIZING SET PROBLEM (RRMS):
Given a database D and an integer r ≥ 1, find a subset
Ĉ ⊆ D such that (1) |Ĉ| ≤ r and (2) E(D\Ĉ, D) is mini-
mum.

In the following, we propose our efficient algorithms to solve the
Regret-ratio Minimizing Set problem in both two-dimensional and
high-dimensional databases.

3. 2D REGRET-RATIO MINIMIZING SET
We start by considering the two-dimensional scenario which, as

discussed in the introduction, not only has significant theoretical
implications but also represents popular use cases in practice.

We show in Theorem 1 that the search space can be reduced to
the skyline tuples rather than in all n tuples in the database.

THEOREM 1. Let T be the set of tuples which are removed from
D. The maximum regret-ratio of the optimal solution for the regret-
ratio minimizing set problem on S is the same as the maximum
regret-ratio of the optimal solution for the regret-ratio minimizing
set problem on D, i.e., E(T,D) = E(T,S).

PROOF. Please refer to Appendix A.

Considering Theorem 1, we first order all skyline tuples in a two-
dimensional table from top left to the bottom right, i.e. S = {t1, t2,
· · · , ts}. We add two dummy tuples t0 and ts+1 to the left of the
top left skyline tuple t1 and to the right of the bottom right skyline
tuple ts respectively. In other words, t0 = (0,max ti[A2]), and
t0 = (max ti[A1], 0), where max ti[Aj ] is the maximum value
of the Aj in all skyline tuples. Figure 3 shows a dataset with 5
skyline tuples {t1, t2, · · · , t6} and two dummy tuples t0 and t7.
Next, we propose a graph model for the two-dimensional Regret-
ratio Minimizing Set problem and we propose a polynomial time
algorithm using dynamic programming in order to find the r tuples
such that the maximum regret-ratio is minimum.

3.1 Graph Modeling

3.1.1 Reduction to Path Search in Graph
We model the two-dimensional Regret-ratio Minimizing Set prob-

lem as a weighted complete graph G = (V,E), where V is the set
of skyline tuples, {t1, t2, · · · , ts}, and two dummy tuples, t0 and
ts+1. Edge weight w(ti, tj) represents the regret-ratio of remov-
ing all skyline tuples between ti and tj . Note that as we proved in
the Theorem 1, the optimal solution is a subset of skyline tuples.
Using this graph model, our goal is to find a path from t0 to ts+1

with at most r intermediate tuples such that tuples follow an in-
creasing order of the subscript in the path and the maximum of the
edge weights are minimized. Next, we discuss how to efficiently
compute the edge weight w(ti, tj). Using the graph model we first
discuss the baseline solution for the problem, and then we describe
the detail of the dynamic programming approach.

3.1.2 Edge weight computation
Each convex hull tuple is the maximum for a set of ranking func-

tions. For example in Figure 4, t1 is the maximum for all linear
ranking functions from F ∈ [0, θ1], while t3 is the representa-
tive of all linear ranking functions from F ∈ [θ1, θ2]. Similarly,
t4, and t5 are the representatives of all linear ranking functions
of F ∈ [θ2, θ3] and F ∈ [θ3, π/2] respectively. One may note
that moving from the top-left to the bottom-right, the contours of
the all ranking functions where the convex hull tuples are maxima
form a sorted range of the angles from 0 to π/2. For example, in
Figure 4, the sorted list ` = [0, θ1, θ2, θ3, π/2] shows all possible



t1 

t5 

t6 

t0 
t2 t3 

t4 

t7 

Figure 3: Dataset with sky-
line tuples {t1, t2, · · · t6} and two
dummy tuples t0 and t7.

Figure 4: Error of removing
{t2, · · · , t5}

linear ranking functions where the convex hull tuples are the max-
ima. In other words the ith element of l shows all ranking functions
F ∈ [θi−1, θi] where the ith convex hull tuple is the maximum.

In Theorem 2, we prove that for two-dimensional databases, the
function F that causes the maximum regret-ratio for removing the
tuples between two skyline tuples ti and tj is specified by the
line between tuples ti and tj . Intuitively, when we keep ti and
tj while removing all skyline tuples in between, and start tallying
the loss from removing ti+1, ..., tj−1 in order, then the loss (max
over all ranking functions) must first increase and then decrease.
Having identified the max-loss function, we now take the advan-
tage of the sorted angle list (`) and apply binary search on ` to
find the convex hull tuple between ti and tj which is the maximum
for the ranking function represented by the line passing through ti
and tj . Algorithm 1 shows the pseudocode of the function Com-
puteEdgeWeight for the two tuples ti and tj . Note that if it can
not find a convex hull tuple between ti and tj the edge weight is
zero (line 4-5). Clearly since we use binary search on the sorted list
l, we are able to find weight of each edge in O(log c), where c is
the size of the convex hull.
Algorithm 1 ComputeEdgeWeight

1: Input: Tuples ti and tj , Sorted list l = [0, θ1, · · · , π/2]
2: Output: Edge weight w(ti, tj)
3: if i = 0 then return t1[A2]− tj [A2]
4: if j = s+1 then return ts[A1]− ti[A1]
5: computeα, where ti and tj are the maxima of all linear ranking

functions F ∈ [0, α].
6: k = Use binary search on l to find the location of α
7: if i ≤ k ≤ j then
w(ti, tj) =

min(Fα(tk)−Fα(ti),Fα(tk)−Fα(tj))

Fα(tk)

8: else w(ti, tj) = 0
9: return w(ti, tj)

THEOREM 2. In 2D, after removing the tuples between two sky-
line tuples ti and tj , the maximum regret-ratio occurs for the func-
tion, F , corresponding to the line between tuples ti and tj .

PROOF. Please refer to Appendix B.

For example, let us consider the edge between t1 and t5 (rep-
resenting the removal of {t2, · · · , t4}). As shown in Figure 4, t1
and t5 will be the representative of all linear ranking functions F ∈
[0, α]. Using binary search on l, it turns out that α ∈ (θ1, θ2), i.e.,
t3 is the tuple which is removed and has the maximum loss. There-
fore,w(t1, t5) = min(Fα(t3)−Fα(t1),Fα(t3)−Fα(t5))

Fα(t3)
= Fα(t3)−Fα(t1)

Fα(t3)

(line 4 in Algorithm 1). As another example let us considerw(t1, t2).
Since there are no convex hull tuples between these two tuples,
w(t1, t2) = 0. Nevertheless, t3 is the maximum for the function
represented by the line passing through t1 and t2, which is not re-
moved by considering the edge t1 to t2.

Next, we discuss a baseline solution for RRMS problem in 2D,
based on the proposed graph modeling.

Figure 5: Dynamic programming approach of 2D-RRMS Algorithm.

3.2 Baseline Solution
Given the graph model and weight definition, a baseline solution

is to compute all weights of the graph and then enumerate all paths
from t0 to ts+1 with at most r intermediate tuples. Among those
paths the one whose maximum edge weight is the minimum is the
solution. Clearly this is inefficient because it takes time quadratic in
the number of skyline tuples (O(r2)) to calculate all edge weights
in the graph. Moreover, it has to enumerate all

∑r
l=0

(
n−2
l

)
paths

from t0 to ts+1 with at most r intermediate tuples, which can take
exponential time. Next, we leverage the locality property of the
skyline tuples in order to propose a polynomial time algorithm 2D-
RRMS using a dynamic programming approach.

3.3 Dynamic Programming Algorithm
Let DP (ti, r

′) be the optimal solution, i.e., a path from ti to
ts+1 with at most r′ ≤ r intermediate nodes which minimizes the
error. Thus, DP (t0, r) would be the solution to our problem. The
recursive formula for the dynamic programming is given by Equa-
tion 5:

DP (ti, 0) = max(w(t0, ti), w(ti, ts+1))

DP (ti, r
′) = min

∀j>i

(
max

(
w(ti, tj), DP (tj , r

′ − 1)
))

(5)

Since skyline tuples are ordered, they provide two important
properties which are helpful to efficiently solve the recursive Equa-
tion 5:

1. w(ti, tj) ≤ w(ti, tj+1)
2. DP (tj , r

′) ≤ DP (tj−1, r
′).

Figure 5 shows the construction of the dynamic programming
algorithm forDP . It contains t0 and ts+1 at its first and last tuples.
Every cell (i, j) in the middle matrix represents DP (ti, r− j). As
shown in the figure, the weights increase from top to bottom, while
DP increases from bottom to top.

In order to find the min value in Equation 5, Algorithm 2 divides
the space between ti and ts+1 into two halves and picks the one in
the middle as tm. Note that the weight computation will be done
online as needed. If the edge weight w(ti, tm) is not previously
calculated it will call the function ComputeEdgeWeight in Algo-
rithm 1 (lines 6-16). Then if w(ti, tm) ≥ DP (tm, r

′ − 1), we can
ignore the nodes between tm and ts+1 because, based on property
(1), w(ti, tm) is the smallest among them and those branches will
not find a better result (line 14). In this case, Algorithm 2 continues
by dividing the tuples between ti+1 and tm−1. On the other hand,
if w(ti, tm) < DP (tm, r

′ − 1) (line 15), we can ignore the nodes
between ti and tm because, based on property (2), DP (tm, r

′−1)
is the smallest among them. In this case, Algorithm 2 continues to
divide the tuples between tm+1 and ts.

THEOREM 3. Time complexity of the algorithm 2 (2D-RRMS)
is in O(rs log s log c).

PROOF. Please refer to Appendix C.



Algorithm 2 2D-RRMS

1: Input: Integer r ≥ 1, Skyline tuples S = {t0, t2, · · · , ts+1},
Sorted list l = [0, θ1, · · · , π/2]

2: Output: The optimal regret-ratio DP (t0, r)
3: for i from 1 to s do DP (ti, 0) = max(w(t0, ti), w(ti, ts+1))
4: for r′ from 1 to r do
5: for i from 1 to s do
6: low = i+ 1 , high = s
7: while True do
8: if low = high then
9: DP (ti, r

′) = max(w(ti, tlow), DP (tlow, r
′ − 1))

10: break
11: end if
12: Let tm be the middle tuple in {tlow, · · · , thigh}
13: if w(ti, tm) is unknown then

w(ti, tm) = ComputeEdgeWeight(ti, tm, l)
14: if w(ti, tm) ≥ DP (tm, r

′ − 1) then high = m
15: else low = m+ 1
16: end while
17: end for
18: end for
19: return DP (t0, r)

4. HD REGRET-RATIO MINIMIZING SET
It is well known that the size of convex hull grows exponentially

with the data dimensionality (i.e., the number of attributes) [27]
(also shown in Figure 1). The need for designing a compact rep-
resentation of high dimensional databases thus becomes even more
pronounced. We address the discovery of regret-ratio minimizing
sets over high-dimensional databases in this section.

Specifically, we start with discussing the deficiency of the exist-
ing heuristic solution. Then, we introduce a conceptual model of
the problem as an infinitely large matrix min-max problem [24]. We
“operationalize” such a conceptual model with a matrix discretiza-
tion approach that provides a user-controllable discretization pa-
rameter. After discretizing the problem space to a manageable size,
we then construct a reduction to set-cover [12] which solves the
min-max problem deterministically in (theoretically) O(n logn)
time, while guaranteeing a regret ratio within any arbitrarily small
user-controllable distance from the optimal regret ratio. We make
this algorithm more practical by incorporating an existing approxi-
mation algorithm for set-cover. Our final algorithm outperforms ex-
isting solutions by an order of magnitude over real-world datasets,
as we shall show in the experimental evaluations.

4.1 Problem with Existing Heuristic Solution
Finding r tuples that minimize the regret-ratio over a high-D

database has been proven to be NP-hard [6]. The existing solu-
tions limit to a greedy heuristic (named as GREEDY) and a simple
space discretization approach that produces a regret ratio within a
fixed distance from the optimal, both proposed by Nanongkai et.
al. [22]. The basic idea of GREEDY is to start by selecting the
point that has the highest value on the first attribute, and then itera-
tively selecting the point with the maximum error from the selected
points and adding it to the set. This algorithm is not designed to
provide any approximate-ratio guarantee. In addition, as we shall
show below, it performs quite badly in some cases. Specifically, for
any arbitrarily large value v, we can always find a case in which
the regret-ratio of the solution provided by GREEDY is no better
than v times the optimal solution.

Given v > 0, let ε = 1/(2 + v). Consider a 3-dimensional
databaseD which contains four tuples t0(1, 0, 0), t1(0, 1, 0), t2(0, 0, 1),
and t3(1−ε, 1−ε, 1−ε), along with an arbitrary number of other tu-

Figure 6: Illustration of Matrix
M .

Figure 7: Illustration of space
partitioning example: m = 3,
γ = 3.

ples that are distributed in the region [0, 1−ε)×[0, 1−ε)×[0, 1−ε).
One can see that, when we run GREEDY with output-size require-
ment r = 3, GREEDY will pick t0, t1, and t2, while the optimal
solution is t3 together with two of t0, t1, and t2.

To see how bad the regret ratio for GREEDY’s solution is, note
that its regret ratio is equal to the distance between point t2 and
the line passing through points t0 and t1, which is equal to 1− 2ε.
Meanwhile, the regret ratio for the optimal solution is ε. Thus, the
approximate-ratio is (1− 2ε)/ε ≥ v.

4.2 Conceptual Model
An intuitive illustration of our conceptual model is shown in Fig-

ure 6. Specifically, consider a matrix M that has the n tuples as its
rows, while its columns consist of all possible linear ranking func-
tions (F). Each cell M [ti, f ] of the matrix is the regret-ratio of ti
with regard to the ranking function f - i.e., the regret ratio for f if
we only have ti in the minimizing set. Thus for each tuple ti ∈ C
and the set of ranking functions f ∈ Fti (the set for which ti is the
maximum), M [ti, f ] is zero, while this value is greater than zero
for other tuples. If we keep r rows of the matrix, the regret-ratio for
each function, is the minimum value (among the selected rows) on
its corresponding column, and the regret-ratio of these r tuples is
the maximum assigned regret-ratio of all columns. We can see the
problem cleanly transforms to a min-max problem over the matrix.

This conceptual model, unfortunately, has an important issue
which makes it impractical: F is continuous and therefore requires
an infinite number of columns to capture! This issue inspires us
to develop a matrix discretization approach which eventually leads
to a linearithmic approximate solution that offers a guaranteed ap-
proximation ratio adjustable by a user-controlled parameter.

4.3 Matrix Discretization
In order to resolve the aforementioned issues with the concep-

tual model, we first discretize F by only considering a subset of
all possible linear ranking functions F ⊂ F as the columns of the
matrix M . We take the help of Polar coordinate system for se-
lecting F . Note that, with help of the polar system, each point is
denoted by one magnitude and m − 1 angles. For example, tu-
ple t(1, 1) is transformed to t〈

√
2, π/4〉 in polar and t′(1, 0, 1) to

t′〈
√

2, 0, π/4〉.
Specifically, we introduce a user-controllable parameter γ which

determines the size of F , by dividing each angle into γ equal-size
partitions. Thus, for a given value γ each angle partition is:

α =
π

2γ
(6)

Applying this discretization policy, the total number of selected
functions (|F |) is:

|F | = (γ + 1)m−1 (7)

Algorithm 3 shows the pseudo-code of the DISCRETIZE algo-
rithm, that partitions the ranking function space based on α and se-



lects F . For example, when m = 3 and γ = 3, we have α = π/6
according to (6). Figure 7 shows the three-dimensional function
space discretization based on α.

Algorithm 3 DISCRETIZE
1: Input: Control Parameter γ, Number of attributes m
2: Output: Discretized functions F
3: F = {}, α = π

2γ

4: for i from 1 to m− 1 do θ[i] = 0
5: for i from 1 to γm−1 do
6: r = 1

{transforming the function from polar system to scalar}
7: for j from m downto 2 do
8: v[j] = r cos(θ[j − 1]α)
9: r = r sin(θ[j − 1]α)

10: end for
11: v[1] = r
12: F = F ∪ {v}

{finding the next function}
13: for j from 1 until θ[j] < γ do θ[j] = 0
14: θ[j] = θ[j] + 1
15: end for
16: return F

THEOREM 4. If a set T of tuples guarantee a regret-ratio thresh-
old of ε for all the ranking functions in f ∈ F ⊆ F , constructed
based on the angle partitioning (α) in Equation 6, the maximum
regret-ratio of those points for any ranking function f ′ ∈ F is:

ε′ ≤ cε+ (1− c) (8)

where c = cos(α′/2) cos(π/4)
cos(π/4−α′/2) and α′ = 2 arcsin(

√
1−cosm−1α

2
).

PROOF. Please refer to Appendix D.

Considering the guarantee provided in Theorem 4, we discuss
our approximate algorithm over the discretized function space in
the next section.

4.4 HD-RRMS Algorithm
In this section, we first model the problem as the discretized

min-max problem. We then take the advantage of the linear-size
discretized problem space in order to find the optimal value for the
discretized matrix min-max problem.

4.4.1 DMM: Discretized min-max Problem
Given the (above described) discretized matrix M , and the value

r, find a set of r rows that minimizes the maximum of the minimum
values of all columns among the selected r rows. Formally, find:

min
∀R⊆S s.t. |R|=r

max
∀f∈F

min
∀i∈R

(M [i, f ]) (9)

If we assume that the number attributes, m, is bounded by a
constant, and the user controlled parameter γ is a constant, then
the total number of discrete functions |F | becomes bounded by a
(albeit large) constant. Recall that M is a matrix with n rows and
|F | columns, where each cell shows the regret-ratio. Given any set
of r rows, the solution to the discretized min-max problem is one of
the cell values. The total number of such values is, at most, n.|F |,
which since |F | is bounded by a constant, is in O(n). We consider
each distinct value in cells of the matrixM as a possible ε threshold
of the following problem.

MRST: Minimum Rows Satisfying the given Threshold prob-
lem: Given the discretized matrix M and the threshold value ε,
find the minimum number of rows in matrix M such that for each

column of matrix M , the minimum value of each column among
the selected rows is less than or equal to ε. Formally:

minimize |R|, ∀R ⊆ S where max
∀f∈F

min
∀i∈R

(M [i, f ]) ≤ ε (10)

Consider an oracle that solves the MRST problem. HD-RRMS
sorts all the distinct values in matrix M , and applying the binary
search strategy, passes the cell-values to the oracle to find the set
of rows that satisfy the threshold. Based on the fact that the size
of returned set is either less than r or not, it continues the search
in lower/upper half. Algorithm 4 shows the pseudo-code of the
HD-RRMS algorithm in the presence of the MRST oracle.

Algorithm 4 HD-RRMS
1: Input: The discretized matrix M and the value r
2: Output: selected tuples (TA)
3: v = sorted list of distinct values in M
4: TA = {}, εmin =∞
5: low = 0, high = |v|
6: while low < high do
7: mid = low+high

2
8: R = MRST(M , v[mid])
9: if |R| ≤ r then

10: TA = R, εmin = v[mid]
11: high = mid− 1
12: else
13: low = mid+ 1
14: end if
15: end while
16: return TA

Suppose TO is the optimal set with the minimum regret-ratio.
Note that since the output of the HD-RRMS algorithm is the opti-
mal solution for a subset of ranking functions, εmin is less than or
equal to the regret-ratio of TO:

εmin ≤ ED\TO (11)

That is because, if there is no subset of tuples with size of at most
r that satisfy the regret-ratio of less than εmin for F (which is a
subset of F), no set will have the regret-ratio of less than εmin
for its super-set (F). Moreover, based on Theorem 4 we know
ED\TA ≤ cεmin + (1− c). From Equation 11 cεmin + (1− c) ≤
cED\TO + (1− c). Thus:

ED\TA ≤ cED\TO + (1− c) (12)

Since c ≤ 1, based on Equation 12, the regret-ratio of the set dis-
covered by HD-RRMS is within (1 − c) distance from the regret-
ratio of the optimal solution.

MRST Oracle: The only missing part of the algorithm is the MRST
oracle. We model the MRST problem with the set-cover prob-
lem [12] by constructing the matrix M ′ as following:

∀i, f : M ′[i, f ] =

{
0, if M [i, f ] > ε

1, otherwise
(13)

M ′ contains constant number of columns and s rows. Since the
number of columns is bounded by a constant, there exists at most a
constant number (more precisely, the power-set of |F |) of distinct
combinations for the row values of M ′. In the next step, the algo-
rithm (giving a distinct id to each value-combination of columns)
parses M ′ and removes the duplicate rows. As a result, M ′ be-
comes a matrix whose number of rows and columns are bound by
constants! Next we transform the MRST problem to the set-cover
problem as follows:
• Each column f in M ′ is an item in the set-cover problem.



• Each row i in M ′ is a set Si in the set-cover problem such that ∀
column f , f ∈ Si iff M ′[i, f ] = 1.

Now the problem is converted to a set-cover instance with a con-
stant number of items and constant number of sets. Thus, even
though the set-cover problem is NP-complete in general, an optimal
solution for this instance is, theoretically, possible in constant-time
order. MRST uses the set-cover solver to find the minimum num-
ber of sets that cover all the columns and returns its corresponding
rows as the optimal solution for the MRST problem. Algorithm 5
shows the pseudo-code of MRST oracle.

4.4.2 Time Complexity of the HD-RRMS Algorithm
Since the size of the discretized matrix M is n|F |, the binary

search over the possible values of ε takes log(n|F |) steps. At
each step, a set-cover with |F | items and min(2|F |, n) sets is con-
structed. Converting M to the set-cover instance takes n|F | time,
while solving it takes, at most, 2min(2|F |,n)|F | time.
Since, |F | = γm, the total time to solve HD-RRMS is:

log(nγm).(nγm + (2min(2γ
m
,n).γm)) (14)

Assuming that γ and m are constants, the running-time of HD-
RRMS is, theoretically, in O(n log(n)).

Algorithm 5 MRST Oracle
1: Input: The discretized matrix M and the threshold ε
2: Output: The set of tuples satisfying the threshold on M

{constructing the matrix M ′}
3: for i from 1 to s do
4: for f in columns of M do
5: M ′[i, f ] = 1 if (M [i, f ] ≤ ε) else 0
6: end for
7: end for

{removing the duplicate rows}
8: seen = {}
9: for i in rows of M ′ do

10: if id(M ′[i]) ∈ seen) then
11: M ′.remove(i)
12: else
13: seen = seen ∪{i}
14: end if
15: end for

{constructing the set-cover problem}
16: items={}, sets={}
17: for f in columns of M ′ do items = items ∪{f}
18: for i in rows of M ′ do
19: set={}
20: for f in columns of M ′ do
21: if M ′[i, f ] == 1 then set = set ∪{f}
22: end for
23: sets = sets ∪{ set }
24: end for
25: return set-cover(items, sets)

4.4.3 Practical HD-RRMS Algorithm
Although HD-RRMS is linearithmic in theory, it can be ineffi-

cient in practice. Even with the existence of an efficient set-cover
solver (such as [23]), depending on the values of γ and m, solving
this problem may become infeasible.

To make the HD-RRMS Algorithm practical, we solve the set-
cover instances approximately using the well-known greedy ap-
proximate algorithm for set-cover [7]. Since this algorithm guar-
antees a log factor in the approximate-ratio, applying it adds an-
other level of approximation and increases the set size to up to

r log(|F |) = rm log(γ) (rather than r) tuples, while maintaining
the distance from the optimal regret ratio in the bound provided in
Theorem 4. Alternatively, one can find a new value (r′) for set-
cover size such that r′ = r

m log(γ)
. In this way, we can make sure

that the set size will not be more than r. However, the distance
from the optimal solution may become larger than what provided
in Theorem 4. Applying the greedy approximate set-cover reduces
the running time to:

log(nγm).(nγm + (min(2γ
m

, n).γm))

≤ 2nγm log(nγm) (15)

Given the importance of the choice of γ in Equation 15, we eval-
uate the impact of the discretization control parameter (γ) in § 6.3
(Figures 24, 25, and 26). On examining the experiment results, it
turns out even though increasing the value γ increases the running
time significantly, the improvement on the quality of results drops
quickly. In our experiments, choosing γ between 4 and 6 seemed
to be appropriate.

5. DISCUSSION

5.1 Top-k Extension
For enabling efficient computation of Top-k queries (instead of

only Top-1 queries) requires us to extend the compact set for higher
values of k > 1, while minimizing the dissatisfaction of the kth top
tuple of the compact set versus the kth tuple of the actual database,
An easy way of adopting the existing algorithms is an iterative ap-
proach with k iterations. At each iteration we discover the max-
ima set over the remaining tuples. Then we remove the tuples in
the maxima set, as well as the tuples falling outside of the convex
shape formed by the set, and start the next iteration over the re-
maining tuples in the database. One can see that this method will
construct k compact layers around the data and can serve for dis-
covering the Top-k. However, studying the theoretical guarantees
of such adaptation requires further investigation in a future work.

5.2 Alternative Matrix Discretization
As an alternative for matrix discretization proposed in § 4.3, we

can change the algorithm to let the user specify the size of func-
tion space as the control parameter (rather than the value γ) which
makes |F | independent from the value of m. Now the discretiza-
tion problem is reduced to the problem of evenly distributing |F |
points on the surface of a quarter hyper-sphere (the vector from the
origin to a point on surface represents a function f ∈ F ).

One way for doing so, is to adopt the force-directed drawing al-
gorithms [18], such as the Barycentric algorithm [25], for evenly
distributing the points. Suppose each point (bound to exist on the
surface of the hyper-sphere) is a particle with a fixed positive charge.
The idea is that if we throw |F | particles on the hyper-sphere, they
start moving (based on the average of forces between them) until
they form an even distributed in which the superposition of forces
is zero. The algorithm thus is as following: until the superposi-
tion of forces on all the points has not converged to zero, compute
the force on each point and move it on the hyper-sphere based on
the direction and the magnitude of it. Another alternative is relax-
ing the notion of an even distribution of the points to the randomly
at uniform distribution. Thus, we can uniformly (at random) se-
lect each functions, in the polar space, by specifying the value of
each angle uniformly at random between 0 and Π/2. Now, we can
compute the expected angle distance between the two neighboring
functions which specifies a expected bound based on Theorem 4.



6. EXPERIMENTS

6.1 Experimental Setup
Hardware and Platform: All our experiments were performed on
a Core-I7 machine running Ubuntu 14.04 with 8 GB of RAM. The
algorithms were implemented in Python.

Real-world Datasets: We used three publicly available real-world
datasets, i.e., Airline dataset, Department of Transportation (DOT),
and Basketball dataset (NBA).
• Airline dataset3: The 2008 Airline dataset has 5, 810, 463 records

with 13 attributes, out of which two of them (namely Actual
Elapsed Time and Distance) are ordinal. We used this dataset
to test the performance of the two-dimensional algorithms over
a large dataset.
• DOT dataset4: The flight on-time dataset is published by the

US Department of Transportation. It records, for all flights con-
ducted by the 14 US carriers in January 2015, attributes such
as scheduled and actual departure time, taxiing time and other
detailed delay metrics. The dataset consists of 457,013 tuples
over 28 attributes with 7 ordinal attributes Dep-Delay, Taxi-out,
Taxi-in, Actual-elapsed-time, Air-time, Distance, ArrivalDelay.
• NBA dataset5: This basketball dataset contains the points for

the combination of player/team/season up to 2009. It contains
21, 961 tuples and 17 ordinal attributes: gp, minutes, pts, oreb,
dreb, reb, asts, stl, blk, turnover, pf, fga, fgm, fta, ftm, tpa, tpm.

Synthetic Data: We also used synthetic data to evaluate the perfor-
mance of our algorithms in the presence of different kind of correla-
tions between attributes. Note that such correlations affect the per-
formance of baseline solutions, e.g., the size of the skyline, as the
more correlated all attributes are, the smaller the skyline becomes.
Moreover, the correlations could affect the regret ratio of our out-
puts too. Specifically, we used the method proposed in [2] to gener-
ate three datasets with correlated, independent, and anti-correlated
attributes. Each dataset has 10M tuples with 10 attributes.

Algorithms Evaluated: For the two-dimensional case, we evalu-
ated the performance of our two-dimensional algorithm, 2D-RRMS,
and compared its performance with the two-dimensional Sweeping-
Line algorithm proposed in [6]. Sweeping-Line is a quadratic al-
gorithm that considers the points in the dual space and covers the
function space using a sweeping line while updating the regret-ratio
of the points, as their corresponding lines intersect. We used the
Nested Block Loop algorithm [2] in order to compute the skylines
for our 2D-RRMS algorithm.

We also evaluated the performance of the high-dimensional al-
gorithm discussed in § 4, namely GREEDY [22] and HD-RRMS
(Algorithm 4). In the practical implementation of HD-RRMS al-
gorithm, we applied the greedy approximate solution to solve the
set-cover problem [12]. Nonetheless, to be fair in comparing the
algorithms’ performance, we only accept the set-cover result if its
size is at most r. Note that our HD-RRMS algorithm features two
main ideas: One is the conceptual model (of matrix min-max prob-
lem) along with its practical discretization, and the other is the
reduction to set-cover and the corresponding approximation algo-
rithm. To test the effectiveness of these two ideas separately, we
devised another greedy algorithm called HD-GREEDY, which sim-
ply applies an iterative greedy approach over the discretized matrix
generated by the first idea (i.e., as explained in § 4.3). Specifi-
cally, HD-GREEDY iteratively picks a tuple that minimizes the
3http://kt.ijs.si/elena_ikonomovska/datasets/airline/2008_14col.data.bz2
4http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_
Short_Name=On-Time
5http://www.databasebasketball.com/

max of the min value of the columns for the selected set of tu-
ples. The complexity of HD-GREEDY is O(rn), because each
iteration requires passing through the matrix once, while comput-
ing the reduction in the matrix max column value only takes O(1).
As one can see, HD-GREEDY uses only the (discretized version of
the) conceptual model, but not our second idea of reduction to set-
cover. As we shall show latter in the section, the performance of
HD-GREEDY almost always falls in between GREEDY and HD-
RRMS, thus demonstrating the effectiveness of both of our ideas.

As mentioned in § 1, the previous studies on approximating high-
dimensional convex hulls [1] and relaxing skyline definitions [4]
differ in objective from our paper (which aims to minimize the user
dissatisfaction on maxima queries). Nonetheless, in order to pro-
vide a broader context for the efficacy of our algorithms, we still
implemented both [1] and [4], and studied the possibility of apply-
ing them for regret minimization.

Performance Measures: For the two-dimensional case, since our
2D-RRMS algorithm always guarantees optimality in terms of re-
gret ratio, we focus our evaluations on the execution time. Specif-
ically, to be fair to the sweeping-line algorithm, we considered the
execution time of our 2D-RRMS algorithm to be the SUM of the
execution time of both the skyline computation process (we used
the skyline computation algorithm in [2]) and the actual execu-
tion of 2D-RRMS. For the high-dimensional case, we used both
the regret-ratio and the overall execution time of an algorithm mea-
sure its performance - naturally, the shorter the execution time and
the smaller the regret ratio, the better.

6.2 Two-dimensional Experimental Result
Figures 8 and 9 show the performance of our 2D-RRMS algo-

rithm (circle marker) and the Sweeping-Line algorithm proposed
in [6] (triangle marker). We tested both algorithms over the corre-
lated, independent, and anti-correlated synthetic datasets. In these
figures, green dotted line, blue dashed line, and red solid line are
used for the correlated, independent, and anti-correlated synthetic
datasets respectively.

Impact of the dataset size (n): In these set of experiments, we
varied the dataset size from 5K to 10M for each of correlated, in-
dependent, and anti-correlated synthetic datasets. Figure 8 shows
the execution time of each algorithm. From the figure, one can
see that 2D-RRMS algorithm outperforms the Sweeping-Line al-
gorithm by orders of magnitude. As expected, the performance of
the Sweeping-Line algorithm does not depend on the correlation
of the attributes because it considers all the joins between points in
the dual environment. The 2D-RRMS algorithm performs better for
the correlated and independent datasets because the anti-correlated
case generates a larger skyline which affects the performance of the
Nested Block Loop algorithm [2] used for skyline discovery. Note
that, while utilizing more efficient skyline algorithms will reduce
the measured execution algorithm of 2D-RRMS, we did not further
pursue this direction as it is orthogonal to our research. In addition,
2D-RRMS already outperforms the sweeping-line algorithm by an
order of magnitude even in the anti-correlated case.

Impact of the output size (r): Next, we fixed the dataset size to
40K, and varied the output size (r) from 3 to 10 (Figure 9). Again
in all experiments, 2D-RRMS algorithm significantly outperforms
the Sweeping-Line algorithm. Since the time complexity of the
Sweeping-Line algorithm, O(rn2), is quadratic in dataset size and
linear in output size, varying r does not affect the performance of
the algorithm. The execution time of our 2D-RRMS algorithm also
does not change by varying r. The reason is actually not because
the execution time of our algorithm has no dependency on r, but
because the pre-processing step (skyline discovery) actually domi-
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Figure 13: HD, Impact of dataset
size (n) on correlated dataset
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Figure 14: HD, Impact of dataset
size (n) on independent dataset
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Figure 15: HD, Impact of dataset
size (n) on Anti-correlated dataset

nates the overall running time, and this pre-processing step is inde-
pendent to r.

Experiment on the skyline-only datasets: To test the skyline-size
effect on the performance of our algorithm, we generated synthetic,
“skyline-only” datasets (i.e., in which every tuple is on the skyline),
with varying sizes. We did so by drawing uniformly at random from
all points inside the 2D unit circle, and then iteratively removing a
point if it is dominated by others. We generated 6 such skyline-only
datasets of sizes 1212, 2431, 3782, 5335, 8488, and 12032 (skyline)
tuples, respectively. Figure 10 shows the performance of the algo-
rithms. We can see that in all cases 2D-RRMS outperformed the
sweeping line algorithm significantly. Indeed, the improvement is
even more pronounced when the skyline size becomes larger.

Real datasets: Figures 11 and 12 show the total execution time
of the two-dimensional algorithms over two real datasets, namely
Airline dataset and NBA dataset (by only considering Air-time and
ArrivalDelay attributes), respectively. For the NBA dataset (Fig-
ure 11) we varied the dataset size (n) from 5K to 20K. We used the
Airline dataset to evaluate the performance of the algorithms over
a large real dataset. Figure 12 shows their performance when we
varied the dataset size (n) from 1M to 5M. In both experiments,
2D-RRMS algorithm outperforms the Sweeping-Line algorithm by
the orders of magnitude. For example, 2D-RRMS algorithm ex-
ecuted in less than 10 seconds in the Airline dataset for n =5M,
while Sweeping-Line algorithm took tens of thousand seconds!

6.3 High-dimensional Experimental Result
The performance of the HD algorithms (§ 4) is studied under

three correlation models, i.e., correlated, independent, and anti-
correlated, on synthetic datasets created based on [2]. The default
values for the dataset size, number of attributes, output size, and
the control parameter to n = 10K, m = 4, r = 5, and γ = 4
respectively. We studied the impact of each parameter individually
as well. Note that in all HD Figures 13 to 28 the left (blue) y-axis
shows the execution time of the algorithms while the right (orange)
y-axis shows the regret-ratio (E). The triangle, rectangle, and circle
line markers represent GREEDY, HD-GREEDY, and HD-RRMS
algorithms respectively, while blue solid lines shows the execution
time and dashed orange lines represent the regret-ratio.

Impact of the dataset size (n): In these set of experiments, we
varied the size of the dataset (n) from 5K to 10M and evaluated the
performance of the three aforementioned algorithms on the syn-
thetic datasets. Figures 13, 14, and 15 show the results for cor-
related, independent, and anti-correlated datasets respectively. We
have compared both the execution time and the regret-ratio of the
algorithms to evaluate their performance.

As explained in § 4, the GREEDY algorithm suffers from run-
ning n LP optimizations before picking a single tuple, which lead
to high execution time. As shown in these figures (13, 14, and 15)
the GREEDY algorithm did not scale in any of the experiments,
e.g., it required several thousands of seconds for n = 20K. On the
other hand, the other two algorithms, namely HD-GREEDY and
HD-RRMS scaled perfectly in all the experiments as their perfor-
mances were less dependent on the dataset size. Yet among the
two algorithms, HD-RRMS algorithm performs better than HD-
GREEDY algorithm, both in time and regret-ratio.

The fluctuation in the regret-ratio of the output of the GREEDY
algorithm in Figure 14 confirms the fact that it cannot guarantee
the output quality. Since HD-GREEDY algorithm deals with the
discretized subset of function F ∈ F and runs the greedy ap-
proach on top of it (while GREEDY applies the greedy manner
on the whole set of function, F) one expect that the output quality
of the GREEDY algorithm should be better than the HD-GREEDY
algorithm. However, in Figure 14 and part of the Figure 13, the
regret-ratio of the output of the HD-GREEDY algorithm is better
than that of the GREEDY algorithm. This is due to the starting
point selected by the GREEDY algorithm, where it does not select
the first point greedily and simply picks the maximum on the first
dimension. Since the latter points are selected based on the initial
point, a bad selection of it may highly propagate to the final quality
of the output. On the other hand, this problem cannot easily get
fixed in the GREEDY algorithm; because in order to construct the
LPs, the GREEDY algorithm needs a non-empty set of so far se-
lected points – i.e. it cannot start the greedy optimization without
pre-selecting at least one point! One way to resolve this, is to run
the algorithm with all possible choices of initial point, which multi-
plies the algorithm complexity with n. Applying the set-cover idea,
the output of the HD-RRMS algorithm had less regret-ratio than the
outputs of the both GREEDY and HD-GREEDY algorithms.
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Figure 16: HD, skyline size when
varying the dataset size (n)
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Figure 17: HD, Impact of num-
ber of attributes (m) on correlated
dataset

4 5 6 7 8 9 10

m

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

S
e
c
)

0

0.1

0.2

0.3

0.4

0.5

R
e
g

re
t-

ra
ti

o
 (

E
)

HD-GREEDY

HD-RRMS

GREEDY

Figure 18: HD, Independent, Im-
pact of number of attributes (m)
on independent dataset
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Figure 19: HD, Impact of num-
ber of attributes (m) on Anti-
correlated dataset
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Figure 20: HD, skyline size when
varying the number of attributes
(m)
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Figure 21: HD, Correlated, Im-
pact of output size (r) on corre-
lated dataset
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Figure 22: HD, Independent, Im-
pact of output size (r) on indepen-
dent dataset
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Figure 23: HD, Impact of output
size (r) on Anti-correlated dataset

Additionally, the skyline size for each of these experiments is re-
ported in Figure 16. As expected, in anti-correlated dataset, most
of the tuples are skyline, while the size is less in the two other
datasets. Despite of such differences, however, our HD-RRMS al-
gorithm significantly outperforms the competitors in all these cases.

Impact of the number of attributes (m): In these set of experi-
ments, we varied the number of the attributes (m) from 4 to 10 for
all the three synthetic datasets, setting the dataset size, and output
size to n = 10K and r = 5 respectively. Figures 17, 18, and 19
show the results for the correlated, independent, and anti-correlated
datasets respectively. As expected for all three datasets the HD-
RRMS algorithm outperforms the GREEDY and HD-GREEDY al-
gorithms both in execution time and regret-ratio. While the exe-
cution time of the HD-GREEDY algorithm is almost similar to the
HD-RRMS algorithm, it outperforms the Greedy algorithm. The
regret-ratio of the output of the HD-GREEDY algorithm is better
in Figure 18 and part of Figure 19, which is, as explained, due to
the bad initial point selected by the GREEDY algorithm.

The skyline sizes are reported in Figure 20. After 6 dimensions,
almost all the tuples in anti-correlated database and most of the
tuples in the independent dataset are skyline. Once again, HD-
RRMS algorithm significantly outperforms the competitors even
when almost all tuples are on the skyline.

Impact of the output size (r): Figures 21, 22, and 23 show the re-
sults for correlated, independent, and anti-correlated datasets, where
the output size (r) is varied from 2 to 7, and dataset size and num-
ber of attributes are set to n = 10K and m = 4 respectively. As
expected, in these set of experiments, also, HD-RRMS algorithm
outperforms the HD-GREEDY and GREEDY algorithms in both
time and regret-ratio, while the execution time of the HD-GREEDY
algorithm is almost similar. The regret-ratio of the output of the
HD-GREEDY algorithm is better than the GREEDY algorithm in
Figures 21, 22, and part of 23, due to the bad initial point selection
in GREEDY algorithm. One interesting fact in these figures is the
bad performance of the GREEDY algorithm for the small output
sizes (especially 2 and 3). This is due to the fact that the first point
was not selected greedily and the other point(s) was selected with
maximum (regret-ratio) distance to it, which (together with the ini-

tial point) may not be a good selection. However, as the algorithm
picks more points, the effect of the initial point reduces.

Impact of the discretization control parameter (γ): In these set
of experiments, we studies the effect of the value of γ in the per-
formance of the HD-RRMS and HD-GREEDY algorithms. Fig-
ures 24, 25, and 26 show the performance of the algorithms for
correlated, independent, and anti-correlated datasets respectively.
While increasing the value of γ does not highly affect the per-
formance of the HD-GREEDY algorithm, it highly affects on the
performance of the HD-RRMS algorithm. On the other hand, in-
creasing the value of γ increases the number of columns of the
discretized matrix by γm and directly affects on the running time
of the algorithms. Looking at the figures, at least in these experi-
ments, selecting γ between 4 and 6 seems appropriate, as it seems
to reach a point of saturation where increasing γ benefits little in
terms of execution time.

Real datasets: We also evaluated the performances of the high-
dimensional algorithms over the DOT and NBA real datasets. We
set the default values of the number of attributes, number of outputs
and discretization control parameter to m = 4, r = 5, and γ = 6
respectively. We set the default dataset size of NBA and DOT to
n = 10K and n = 100K respectively.

In the first set of the experiments we varied the dataset size (n)
from 100K to 400K for DOT and from 5K to 20K for NBA dataset.
Figures 27 and 29 show the performance of the algorithms for the
DOT and NBA respectively. Similar to the synthetic experiments,
in both experiments the HD-RRMS and HD-GREEDY algorithms
run faster in the order of magnitude, while the the GREEDY algo-
rithm does not perform well as the input size (n) increased, e.g., it
requires more than 20, 000 seconds for n = 400K in DOT. From
the regret-ratio point of view the HD-RRMS algorithm outperforms
the other two algorithms. The HD-GREEDY algorithm has a better
output quality than the GREEDY algorithm for some of the cases.

In the second set of experiments, we varied the number of at-
tributes (m) from 3 to 6. In both experiments, the HD-RRMS al-
gorithm has the best running time, while the HD-GREEDY algo-
rithm performs similarly. While the HD-RRMS algorithm has the
best output quality in both experiments, the GREEDY algorithm
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Figure 24: HD, Impact of num-
ber of partitions (γ) on correlated
dataset
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Figure 25: HD, Impact of num-
ber of partitions (γ) on indepen-
dent dataset
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Figure 26: HD, Impact of num-
ber of partitions (γ) on Anti-
correlated dataset
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Figure 27: HD, DOT dataset, var-
ied the dataset size (n)
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Figure 28: HD, DOT dataset, var-
ied the number of attributes (m)
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Figure 29: HD, NBA dataset, var-
ied the dataset size (n)
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Figure 30: HD, NBA dataset, var-
ied the number of attributes (m)
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Figure 31: Adopting the k-
dominant skyline

provides better output quality for NBA and the output of the HD-
GREEDY algorithm is better for the DOT dataset.

Adopting the state-of-the-art: In order to test whether one could
achieve a reasonable regret-ratio by selecting a subset according to
existing techniques that were not designed to optimize the regret-
ratio, we implemented a number of existing algorithms for related
problems. First, we tested the partitioning-based approximate con-
vex hull method proposed in [1]. As expected, since the goal of this
algorithm is efficiently discovering a set which is as similar to the
real convex hull as possible, the method is not adoptable here. For
example, in these experiments, the size of the discovered set was
always larger than the original convex hull, defeating the purpose
of generating a more compact representation of the original data.

In another set of experiments, we considered the existing tech-
nique of finding the k-dominant skyline [4]. Once again, minimiz-
ing the dissatisfaction on maxima query is not its objective - testing
it here is solely to demonstrate that it should not be used for the
purpose of minimizing regret-ratio. k-dominant skyline is a sub-
set of the skyline when we relax the definition of dominance to k-
dominance (i.e., a tuple t k-dominates a tuple t′ if there are k ≤ m
attributes in which t is better than or equal to t′ and is better in at
least one of these k attributes). k-dominant skyline is the set of
tuples are not k-dominated by any other points in the database.

In order to adopt the k-dominant skyline for finding a set of at
most r tuples, we do a binary search over the value of k and at
each iteration, if the size of the discovered set is larger than r, we
increase the value of k and reduce it otherwise. Somewhat surpris-
ingly, we found a major problem with this adaptation - the chance
of returning the empty set is high! To understand it, let us consider
the case where m = 2 and the tuples are distributes inside a circle.
The expected number of convex hull points (a subset of skyline) is
O(n

1
3 ) [13], meaning that having k = 2 would often lead to too

large an output. However, if we reduce k from 2 to 1, the output
size will most likely become zero because, for every skyline point,
there is very likely a point that is better on either x or y! Indeed, we
ran an experiment on n = 10000 m = 4 over the three synthetic
datasets - in all experiments, the returned set was empty. Figure 31
shows the running time of the algorithm over each of the datasets.

7. RELATED WORK
Top-k discovery algorithms: These algorithms can be divided into
on-demand query processing and index construction. On-demand
Top-k algorithms focus on the data access methods. For exam-
ple, NRA [11] considers the existence of one sorted list of tuples
for each attribute, and finds the Top-k only by exploring the lists,
while TA [10] applies both random and sorted access. CA [10], Up-
per/Pick [3], and [20] are the more advanced algorithms in this cat-
egory. Focusing on client-server databases, [21] views the existing
query engine as the only data access method and designs efficient
Top-k discovery algorithms for them. Besides, methods like PRE-
FER [15] and LPTA [9], employ the materialized views to increase
the efficiency of Top-k discovery process. While the first class of
Top-k algorithms focuses on efficiently answering the queries on
demand, the other set of works aims toward indexing the data be-
forehand, such that they can answer future queries fast. For exam-
ple, ONION [5] constructs k layers of convex hull that can serve
as the representative for linear ranking functions. [29] adds the no-
tion of robustness as the set that performs the best in the worst case
scenario. The recent work in this category includes [14,19,28], etc.

Approximate convex hull and skyline reduction algorithms:
Given the complexity of convex hull discovery algorithms, espe-
cially in high-dimensions, designing effective approximate algo-
rithms, with tight approximate-ratios, for finding the convex hull
has attracted many researchers. For example, J. L. Bently et. al. [1]
propose a FPTAS ε-approximate convex hull algorithm for the two-
dimensional algorithms and extend it to high-dimensions. Simi-
larly, [16] partitions the space of skyline tuples into several sub-
regions and finds the convex hull in each sub-region, which will
result in finding a super-set of convex hull. The objective here is to
approximately find a set which is as similar to the original convex
hull, not reducing the size of it. On the other hand, a set of work,
such as [4, 26], aim toward reducing the skyline size. For example,
Chan et. al. [4] relax the notion of domination to “k−domination”
in order to increase the chance domination and reduce the skyline
size. However, their objective in ranking the skyline tuples is not
minimizing the user dissatisfaction on maxima queries.

Regret-ratio minimizing problem: The authors in [6,22] focused
on regret minimization of a database to support multi-criteria de-



cision making. Regret-ratio and Regret-ratio minimizing problem
were first introduced in [22] in order to minimize the maximum
user dissatisfaction of a Top-k query. They proposed the so called
CUBE algorithm to provide an upper-bound guarantee for the regret-
ratio of the optimal solution and more importantly they showed
it is independent of the input size (n). They also provided the
GREEDY heuristic for the problem that runs O(nr) linear pro-
grams and picks the points greedily. Chester et.al. [6] extended
the regret-ratio notion to k-regret ratio which measures how far
from a kth “best” tuple is the “best” tuple in a subset. They pro-
pose k-regret minimizing sets problem and proved that it is NP-hard
in a high-dimensional database. They also proposed the quadratic
Sweeping-Line algorithm for the two-dimensional scenario. Kessler
et. al. [17] extended the k-regret minimizing notion to nonlinear
functions. The focus of this paper is designing efficient algorithms
for the regret-ratio minimizing problem proposed in [22]. In two-
dimensional case, compared to quadratic existing Sweeping-Line,
we propose the linearithmic dynamic programming algorithm 2D-
RRMS, while for the high-dimensional case we provide the lin-
earithmic HD-RRMS that guarantees a user controllable distance
from the optimal solution.

8. CONCLUSION
In this paper, we made several fundamental theoretical as well as

practical advances in developing a compact maxima representative.
We have studied both two-dimensional as well as high-dimensional
databases to find a set limited to only r tuples that minimizes the
maximum regret-ratio. In the case of two-dimensional databases,
we have developed an innovative dynamic programming algorithm
to build the optimal index that runs in linearithmic time. We have
developed an innovative linearithmic algorithm that guarantees a
regret ratio that is within a user-controllable distance from the op-
timal regret ratio. Our comprehensive set of experiments on syn-
thetic (with different correlation models) and real datasets of size
up to several million records confirm the efficiency, scalability, and
effectiveness of our algorithms.
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APPENDIX
A. PROOF OF THEOREM 1

Let T be the set of tuples which are removed from D. The max-
imum regret-ratio of the optimal solution for the regret-ratio mini-
mizing set problem on S is the same as the maximum regret-ratio
of the optimal solution for the regret-ratio minimizing set problem
on D, i.e., E(T,D) = E(T,S).

PROOF. Suppose, ∃t ∈ Ĉ where t /∈ S.

⇒ ∃t′ ∈ D, s.t. t′ � t

Since ∀A ∈ A, t[A] ≥ t′[A] and ∃A ∈ A, t[A] > t′[A], for any
ranking function F :

F (t) =
∑
∀Ai∈A

wi · t[Ai] < F (t′) =
∑
∀Ai∈A

wi · t′[Ai]

It means by replacing t with t′ the size of the set does not change,
and the maximum regret-ratio after the replacement is less than or
equal to the maximum regret-ratio before the replacement. There-
fore, the maximum regret-ratio of the optimal solution for the sky-
line tuples, S, is the same as the maximum regret-ratio of the opti-
mal solution for all tuples in D.

B. PROOF OF THEOREM 2
In 2D, after removing the tuples between two skyline tuples ti

and tj , the maximum regret-ratio happens for the function, F , cor-
responding with the line between tuples ti and tj .

PROOF. Let F be the ranking function specified by the line be-
tween tuples ti and tj . For a tuple t between ti and tj and a ranking
function F ′ ∈ ∪

∀k∈[i,j]
Fk either ti or tj is the maxima after remov-

ing the tuples {tk|i < k < j}. More specifically, if (the angle of)
F ′ < F , ti (and if F ′ > F , tj) will be the maxima. Let us name
the best alternative for F ′ (either ti or tj) as t′. For example in
Figure 2, l2 shows the function F and for any ranking function be-
tween l1 and l2, t2 is the best alternative, while the best alternative
for the functions between l2 and l3 is t4.

Suppose the lines F in Figure 32 is parallel with the line passing
though the points t′ and t′′ (representing the function for which
both t′ and t′′ have equal scores) and let F ′ be a function in Ft
for which t′ is the best alternative (the same analysis is valid for
a F ′′ for which t′′ is the best alternative). Since the line tA is
perpendicular to the line t′t′′, F (t)−F (t′) is equal to the distance
between t and A (shown as |tA|). On the other hand, since the
lines tB and F ′ are perpendicular, F ′(t) − F ′(t′) is equal to the
distance between t and B (shown as |tB|). Looking at the figure,
|tC| < |tA|. Moreover:

|tC| = tB

cos θ

since cos θ < 1

⇒ F ′(t)− F ′(t′) = |tB| < |tC| < |tA| = F (t)− F (t′)

Now given that F (t) − F (t′) > F ′(t) − F ′(t′), our goal is to
prove that:

F (t)− F (t′)

F (t)
>
F ′(t)− F ′(t′)

F ′(t)
(16)

If F (t) ≤ F ′(t), since F (t)−F (t′) > F ′(t)−F ′(t′), then Equa-
tion 16 holds.
If F (t) > F ′(t):

F (t)−F (t′) > F ′(t)−F ′(t′)⇒ F (t)−F ′(t) > F (t′)−F ′(t′)

Let σ = F (t′)− F ′(t′) and δ = F (t)− F ′(t)− σ.

⇒F (t) = F ′(t) + σ + δ and F (t′) = σ + F ′(t′)

⇒F (t)− F (t′)

F (t)
=
F ′(t) + σ + δ − σ − F ′(t′)

F ′(t) + σ + δ

=
F ′(t)− F ′(t′) + δ

F ′(t) + σ + δ

Since σ ≥ 0 and δ ≥ 0,

⇒ F ′(t)− F ′(t′) + δ

F ′(t) + σ + δ
>
F ′(t)− F ′(t′)

F ′(t)

C. PROOF OF THEOREM 3
Time complexity of the algorithm 2 (2D-RRMS) is inO(rs log s log c).

PROOF. As shown in Figure 5, DP can get constructed consider-
ing a back-track matrix completion approach from level (column)
r to level 0, while the values at level i can get computed from the
level i + 1. The matrix has s rows and r columns. For each cell
of the matrix, a binary search with order of O(log s) is applied for
finding the min value in Equation 5, and at each step of the bi-
nary search, if w(ti, tj) is unknown, it will call the Algorithm 1
to compute the edge weight which takes O(c). Thus, the overall
complexity of 2DEP is O(rs log s log c).

D. PROOF OF THEOREM 4
If a set T of tuples guarantee a regret-ratio threshold of ε for all

the ranking functions in f ∈ F ⊆ F , constructed based on the
angle partitioning (α) in Equation 6, the maximum regret-ratio of
those points for any ranking function f ′ ∈ F is:

ε′ ≤ cε+ (1− c) (17)

where c = cos(α′/2) cos(π/4)
cos(π/4−α′/2) and α′ = 2 arcsin(

√
1−cosm−1α

2
).

PROOF. We want to see if the regret-ratio of each representative
tuple for all ranking function f ∈ F that are picked is within the
ε regret-ratio bound, how much is the maximum regret-ratio for a
missing ranking function. For the simplicity, let us start with the
2D case where there are two attributes x and y (Figure 33). Since
each missing ranking function is bounded between two selected
functions with angle α, its maximum angle with its closest selected
ranking function is at most α

2
(the worst case is when the ranking

function is in the middle of two consequent selected functions).
Consider a representative tuple for a ranking function f ∈ F which
is in the ε range of the top representative of f . Again the worst
case happens when the regret-ratio of such tuple is exactly ε for the
selected ranking function. Suppose the top green line and the red
line in Figure 33 shows f and the missing ranking function with
angle distance α

2
from it respectively. Any tuple above the blue

perpendicular dashed line with f is within the ε threshold bound
for it. As specified in the figure, the intersection of the dashed blue
line and the y-axis (tuple t′ in the figure) maximizes the distance
of the representative of f for f ′. Moreover, in order to maximize
the distance we put the Top-1 for f to be exactly on it, i.e. tuple t.



Figure 32: Illustration of the distance of func-
tion scores

Figure 33: Illustration of maximum growth in
2D.

Figure 34: Illustration of the cell diameter in
3D.

Thus, the maximum regret-ratio of t′ for f ′ is:

ε′ =
f ′(t′′)− f ′(t′)

f ′(t′′)
=
OC −OD

OC

OC =
f(t)

cos(α/2)

OD =OA cos(π/4), OA =
f(t′)

cos(π/4− α/2)

⇒ OD =
f(t′)

cos(π/4− α/2)
cos(π/4)

ε′ =

f(t)
cos(α/2)

− f(t′)
cos(π/4−α/2) cos(π/4)

f(t)
cos(α/2)

=
f(t)− f(t′) cos(α/2) cos(π/4)

cos(π/4−α/2)

f(t)

Let c =
cos(α/2) cos(π/4)

cos(π/4− α/2)

⇒ ε′ =
f(t)− cf(t′)

f(t)
= c

f(t)− f(t′)

f(t)
+ (1− c)

Since 0 < c ≤ q and f(t)−f(t′)
f(t)

≤ ε, ⇒ ε′ ≤ cε + (1 − c) ≤
ε+ (1− c).

Now let us extend the computation to the high-dimensional case.
As shown in Figure 7, the space partitioning can be seen as a set
of (hyper-)cones originated at point (0, . . . , 0). Looking from the
surface of the cone, each missing function is covered by a set of se-
lected ranking functions inF which together form a (hyper-)trapezius
around it. Consider the hyper-plane constructed between the ori-
gin and the two points in the diameter of hyper-trapezius, in which
the distance between the two selected points is maximum. One
can see that the maximum growth in the regret-ratio of a point and
a missing function happens for the function in the middle of this

hyper-plane (that has the maximum angle distance with the selected
ranking functions). In the following, looking at Figure 34, we com-
pute the distance d between the two diagonal points, and use it to
compute the maximum angle (α′) between two adjacent ranking
functions.

In order to do so, we consider the corners (1,0,. . . ,0), i.e. the
point onX-axis and the point (cosm−1 α, cosm−2 α sinα, cosm−3

α sinα, . . . , sinα). (computed by transforming the coordinates
from the polar to scalar system).

d =
√

(1− cosm−1 α)2 + (cosm−2 α sinα)2 + · · ·+ sin2 α

=

√√√√(1− cosm−1 α)2 + sin2 α

m−2∑
i=1

cos2i α

Following the geometric series (while replacing sin2 α with 1 −
cos2 α),

d =
√

(1− cosm−1 α)2 + (1− cos2(m−1) α)

=
√

2(1− cosm−1α) (18)

Considering the value of d
2

, while knowing that the radius of the
hyper-sphere is 1,

α′ = 2 arcsin(

√
1− cosm−1α

2
) (19)

Now using the same analysis we did for the two-dimensional case:

ε′ ≤ cε+ (1− c) ≤ ε+ (1− c)

where

c =
cos(α′/2) cos(π/4)

cos(π/4− α′/2)


